时序分析:DTW算法(基于模板)】的更多相关文章

对时序对象进行分析,使用KMP算法可以分析速率不变的模式,参考时序分析:欧式空间轨迹模式识别.使用基于模板匹配的方法,对于速率发生变化的模式,需要用新的对速率要求松散的方法,DTW方法为一种广泛使用的方法. 此外,基于模板的方法也有MEI方法(Measured Equation of invariance).MHI方法(OpenCV使用了-Forward-Backward MHI (before and after the historical figure to the movement)即前…
                          dtw路径与线性变换路径对比 转自:http://baike.baidu.com/link?url=z4gFUEplOyqpgboea6My0mZPBh3_sZZpk6EfpzwuZ16uMlyPl7utZQi-XNkotLzLrGih9zUFNG4_tygNg8khiK 在孤立词语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹…
DTW(动态时间弯折)算法原理:基于动态规划(DP)的思想,解决发音长短不一的模板匹配问题.相比HMM模型算法,DTW算法的训练几乎不需要额外的计算.所以在孤立词语音识别中,DTW算法仍得到广泛的应用. 在训练和识别阶段,首先采用端点检测算法确定语音的起点和终点.对于参考模板{R(1),R(2),-,R(m),-,R(M)},R(m)为第m帧的语音特征矢量.对于测试模板{T(1),T(2),-,T(n),-,T(N)},T(n)为测试模板的第n帧的语音特征矢量.参考模板与测试模板一般采用类型的特…
DTW主要是应用在孤立词识别的算法,用来识别一些特定的指令比较好用,这个算法是基于DP(动态规划)的算法基础上发展而来的.这里介绍语音识别就先介绍下语音识别的框架,首先我们要有一个比对的模版声音,然后需要去截取其里面包含真正属于语音的部分,这个要采用一个叫做vad(voice activedetection)语音活动检测的算法,而在vad中间我们最常使用双门限端点检测这种方法,如图所示,我们采用vad判断语音的开始和结束,判断方法就是通过音量的大小做一个阈值判定,在时域上很简单就能判定. 图.s…
作者:桂. 时间:2017-05-31  16:17:29 链接:http://www.cnblogs.com/xingshansi/p/6924911.html 前言 动态时间规整(Dynamic Time Warping,DTW)是孤立词识别的早期技术,梳理一下,主要包括: 1)孤立词识别操作步骤; 2)DTW原理; 内容基本就是两个博文的整合,最后一并给出链接. 一.孤立词识别操作步骤 基本原理: 基本操作是预加重.分帧,端点检测技术又叫有话帧检测(Voice activity detec…
DTW为(Dynamic Time Warping,动态时间归准)的简称.应用很广,主要是在模板匹配中,比如说用在孤立词语音识别,计算机视觉中的行为识别,信息检索等中.可能大家学过这些类似的课程都看到过这个算法,公式也有几个,但是很抽象,当时看懂了但不久就会忘记,因为没有具体的实例来加深印象. 这次主要是用语音识别课程老师上课的一个题目来理解DTW算法. 首先还是介绍下DTW的思想:假设现在有一个标准的参考模板R,是一个M维的向量,即R={R(1),R(2),……,R(m),……,R(M)},每…
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; bool ins[100010]; int col[100010];//记录每个点所属强连通分量(即染色) vector<int> map[100010]; stack<int> st; int tot;//时间戳 int colnum;//记录强连通分量个数 void tarjan(…
Google Cardboard的九轴融合算法 --基于李群的扩展卡尔曼滤波 极品巧克力 前言 九轴融合算法是指通过融合IMU中的加速度计(三轴).陀螺仪(三轴).磁场计(三轴),来获取物体姿态的方法.它是开发VR头显中的一个至关重要的部分.VR头显必须要实时准确地获取用户头部的姿态,然后在屏幕上渲染出在对应的姿态所应该要看到的画面,才能让用户在VR世界里获得沉浸感. 因为人眼是非常精密的器官,如果渲染出来的画面稍微有一点点的延时或者偏差,人眼都能察觉出来,导致用户头晕想吐,再也不相信VR了.所…
http://blog.csdn.net/pipisorry/article/details/52537660 引言 概率图模型(无论贝叶斯网或马尔可夫网)在一个固定的随机变量集X上具体指定了一个联合概率分布.然后这个固定的分布可以在很多不同的情况下使用. 基于变量的模型 更加复杂的空间 皮皮blog 时序模型 基本假设 动态贝叶斯 状态-观测模型 隐马尔可夫模型 线性动态系统 皮皮blog 模板变量与模板因子 皮皮blog 对象-关系领域的有向概率模型 刻画有向概率模型的基于模板的表示语言.…
# 所有节点的g值并没有初始化为无穷大 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径 # 最后closed表中的节点很多,如何找出最优的一条路径 # 撞墙之后产生较多的节点会加入closed表,此时开始删除closed表中不合理的节点,1.1版本的思路 # 1.2版本思路,建立每一个节点的方向指针,指向f值最小的上个节点 # 参考<无人驾驶概论>.<基于A*算法的移动机器人路径规划&g…