题目描述 给定一个长度为$n$的序列$a$以及常数$k$,序列从$1$开始编号.记$$f(l,t)=\sum \limits_{i=l}^ra_i-\max \limits_{i=l}^r\{a_i\}$$求合法的正整数对$(l,r)$的数量,满足$1\leqslant l<r\leqslant n$,且$k|f(l,r)$. 输入格式 第一行两个正整数$n$和$k$. 第二行包含$n$个正整数,第$i$个正整数表示$a_i$. 输出格式 一行一个正整数,表示答案. 样例 样例输入1: 4 3…
noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\(120pts\),其实距离我的理想分数还差那么\(100pts\) 具体是这样的,第一题AC,第二题10,第三题10 下次要把知识都回忆一下,比如这次用到的欧拉定理,差一点就忘记了 noip模拟13!!!200分!! · · · T1 简单的区间 哈哈哈这个题是我这几次考试中最成功的一道了,所以我一…
题目传送门(内部题82) 输入格式 一行一个字符串$ss$,保证$ss$中只包含$'('$和$')'$. 输出格式 一行一个整数,表示满足要求的子序列数对$10^9+7$的结果. 样例 样例输入1: )(()() 样例输出1: 样例输入2: ()()() 样例输出2: 样例输入3: ))) 样例输出3: 数据范围与提示 样例解释: 第一组样例中,有以下几种子序列满足条件(字符串下标从$1$计数): 删除$1,5$位置的字符,得到$(())$ 删除$1,2,3,4$位置的字符,得到$()$ 删除$…
题目背景 $Sparkling\ ashes\ drift\ along\ your\ flames \\ And\ softly\ merge\ into\ the\ sky$ 题目传送门(内部题14) 输入格式 第一行一个整数$id$表示子任务编号.接下来一行两个整数$n,q$.接下来$n-1$行,第$i$行两个整数$f_{i+1},w_{i+1}$,分别表示树上$i+1$的父亲,以及到父亲的边的生机值.接下来$q$行,每行两个整数$u,addw$,表示把$u$到$u$的父亲的边的生机值加上…
题目传送门(内部题34) 输入格式 第一行,一个正整数$n$.第二行,$n$个正整数$a_i$,保证$a_i$互不相等. 输出格式 一行一个整数表示间宫卓司得到的蛋糕大小总和的最大值. 样例 样例输入1: 52 8 1 10 9 样例输出1: 样例输入2: 81 10 4 5 6 2 9 3 样例输出2: 数据范围与提示 样例1解释: 最优解为:卓司君选第$2$块:雨咲酱选第$1$块:卓司君选第$5$块:雨咲酱选第$4$块:卓司君选第$3$块. 数据范围: 对于$32\%$的数据,$1\leqs…
题目传送门(内部题104) 输入格式 第一行一个正整数$T$,表示该测试点内的数据组数,你需要对该测试点内的$T$组数据都分别给出正确的答案才能获得该测试点的分数. 接下来$T$组数据,每组数据一行两个正整数$p,q$. 输出格式 对每组数据输出一行一个整数表示答案. 样例 样例输入: 51 13 55 32 44 2 样例输出: 19764 数据范围与提示 对于$50\%$的数据,$1\leqslant p,q\leqslant 10,000$. 对于$100\%$的数据,$1\leqslan…
题目描述 从前有个包含$n$个点,$m$条边,无自环和重边的无向图. 对于两个没有直接连边的点$u,v$,你可以将它们合并.具体来说,你可以删除$u,v$及所有以它们作为端点的边,然后加入一个新点$x$,将它与所有在原图中与u或v有直接连边的点连边. 你需要判断是否能通过若干次合并操作使得原图成为一条链,如果能,你还需要求出这条链的最大长度. 输入格式 从文件$merge.in$中读入数据. 第一行两个正整数$n,m$,表示图的点数和边数. 接下来m行,每行两个正整数$u,v$,表示$u$和$v…
题目描述 从前有个变量$x$,它的初始值已给出. 你会依次执行$n$次操作,每次操作有$p\%$的概率令$x=x\times 2$,$(100−p)\%$的概率令$x=x+1$. 假设最后得到的值为$w$,令$d$为$w$的质因数分解中$2$的次数,求$d$的期望. 输入格式 从文件$exp.in$中读入数据. 第一行三个整数$x,n,p$,含义见题目描述. 输出格式 输出到文件$exp.out$中. 一行一个实数,表示$d$的期望. 如果你的答案与标准答案的误差不超过$10^{−6}$,则判定…
题目描述 从前有个括号序列$s$,满足$|s|=m$.你需要统计括号序列对$(p,q)$的数量. 其中$(p,q)$满足$|p|+|s|+|q|=n$,且$p+s+q$是一个合法的括号序列. 输入格式 从文件$bracket.in$中读入数据.第一行两个正整数$n,m$. 第二行一个长度为$m$的括号序列,表示$s$. 输出格式 输出到文件$bracket.out$中. 输出一行一个整数,表示符合条件的$(p,q)$的数量对$10^9+7$取模的值. 样例 样例输入1: 4 1 ( 样例输出1:…
题目描述 对于一个长度为$n$,且下标从$1$开始编号的序列$a$,我们定义它是「合法的」,当且仅当它满足以下条件:·$a_1=1$·对于$i\in [1,n),a_i\leqslant a_{i+1}\leqslant a_i+1$且$a_{i+1}$为正整数·对于任意在$a$中出现过的数$v$,记它的出现次数为$s$,则$2\leqslant s\leqslant 5$给定一个长度为$n$的序列$a$,其中有一些位置为$0$,你需要在这些位置上任意填数,使得$a$成为一个合法的序列,并且最大…