HDU Shell Necklace CDQ分治+FFT】的更多相关文章

Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose…
题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对于这种递推式,也就是dp[i]等于前j个dp数组和a数组的卷积,然后可看所有的 一看n是1e5,所以暴力超时,然后采用cdq分治加速,这种卷积递推通常采用cdq分治加速 cdq的话很简单了,就是先递归左边,算左对右的贡献,递归右边就行,一半一半更新 #include <cstdio> #inclu…
Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose the shell necklace is a…
题目 简述: 有一段长度为n的贝壳,将其划分为若干段,给出划分为每种长度的方案数,问有多少种划分方案 题解 设\(f[i]\)表示长度为\(i\)时的方案数 不难得dp方程: \[f[i] = \sum\limits_{j=0}^{i} a[j] * f[i - j]\] 考虑转移 直接转移是\(O(n^2)\)的 如何优化? 容易发现这个转移方程非常特别,是一个卷积的形式 考虑fft 分治fft 分治fft解决的就是这样一个转移方程的快速计算的问题 \[f[i] = \sum\limits_{…
Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose the shell necklace is a sequence of…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量. 显然\(g(i)=2^{C_i^2}\)种,但是我们要把不联通的去掉. 枚举1号点所在联通块大小\(j\).从剩下\(i-1\)个点里选\(j-1\)个点和1号点构成联通块,有\(C_{i-1}^{j-1}\)种选法.1号点所在联通块的连边方案有\(f(i)\)种,剩下\(i-j\)个点随便连边…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3,则其权值为5,现在有长度为n的字段,求通过不同拆分得到的字段权值乘积和. [题解] 记DP[i]表示长度为i时候的答案,DP[i]=sum_{j=0}^{i-1}DP[j]w[i-j],发现是一个卷积的式子,因此运算过程可以用FFT优化,但是由于在计算过程中DP[j]是未知值,顺次计算复杂度是O(…
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but…
首先读出题意,然后发现这是一道DP,我们可以获得递推式为 然后就知道,不行啊,时间复杂度为O(n2),然后又可以根据递推式看出这里面可以拆解成多项式乘法,但是即使用了fft,我们还需要做n次多项式乘法,时间复杂度又变成O(n2 * log n),显然不可以.然后又利用c分治思维吧问题进行拆分问题但是,前面求出来的结果对后面的结果会产生影响,所以我们使用cdq分治思想来解决这个问题,时间复杂度变为O(n * log2n). #include<bits/stdc++.h> using namesp…
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友. 这年头真是--分治FFT都开始烂大街了-- 我们来推一推吧 这显然是一个1d1d的DP,用f[i]表示i名队员的方案数 f[i]=∑j=0i−1f[i−j−1]∗Cji−1 即i−1个人里面选j个和i组队(似乎类似strling数) 然后化一下简,便可得到 f[i]=(i−1)!∑j…
[CF553E]Kyoya and Train 题意:有一张$n$个点到$m$条边的有向图,经过第i条边要花$c_i$元钱,经过第i条边有$p_{i,k}$的概率要耗时k分钟.你想从1走到n,但是如果整个过程耗时超过了$t$,则需要额外花费$f$元.求从1走到n的期望最小花费. $n\le 50,m\le 100,t\le 20000,k\le 1$ 题解:我们先用最短路预处理出如果已经超时了,从1走到n的最小花费.剩下的考虑DP. 用f[i][j]表示在i时刻到达了j,想走到n的最小花费.则对…
Sean owns a company and he is the BOSS.The other Staff has one Superior.every staff has a loyalty and ability.Some times Sean will fire one staff.Then one of the fired man’s Subordinates will replace him whose ability is higher than him and has the h…
Mr. Zstu and Mr. Hdu are taking a boring class , Mr. Zstu comes up with a problem to kill time, Mr. Hdu thinks it’s too easy, he solved it very quickly, what about you guys? Here is the problem: Give you two sequences L1,L2,...,Ln and R1,R2,...,Rn. Y…
题目链接 给n个操作, 第一种是在x, y, z这个点+1. 第二种询问(x1, y1, z1). (x2, y2, z2)之间的总值. 用一次cdq分治可以将三维变两维, 两次的话就变成一维了, 然后最后一维用树状数组维护. 对于每个询问, 相当于将它拆成8个点. 注意第二次cdq分治的时候l可能小于r. 所以这里的return条件是l <= r而不是l == r. 找了好久... #include <bits/stdc++.h> using namespace std; #defin…
Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i) #include <bits/stdc++.h> using namespace std; #define dob complex<double> #define rint register int #defin…
题目链接 题目大意:一共有Q(1<=Q<=50000)组操作,操作分为两种: 1.在x,y,z处添加一颗星星 2.询问以(x1,y1,z1)与(x2,y2,z2)为左上和右下顶点的矩形之间的星星数 所有坐标取值范围均为[1,1e9] 思路:由于坐标取值范围太大(即使离散化后也很大),3维的数组肯定开不下,所以只能另辟蹊径. 解法一(两重CDQ+树状数组,需将z坐标离散化): 1)将每个查询操作拆分为8个(容斥),将所有操作放入一个数组qr中 2)将所有操作按时间排序(其实不用,因为读入的顺序就…
Problem Description Astronomers often examine star maps where stars are represented by points on a plane and each star has Cartesian coordinates. Let the level of a star be an amount of the stars that are not higher and not to the right of the given…
[HDU5730]Shell Necklace(多项式运算,分治FFT) 题面 Vjudge 翻译: 有一个长度为\(n\)的序列 已知给连续的长度为\(i\)的序列装饰的方案数为\(a[i]\) 求将\(n\)个位置全部装饰的总方案数. 答案\(mod\ 313\) 题解 很明显,是要求: \(f[n]=\sum_{i=0}^na[i]\times f[n-i],f[0]=0\) 卷积的形式啊.. 然后就可以开始搞了 忍不住的方法一 好明显啊,把生成函数\(F,A\)给搞出来 然后就有\(F*…
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 525  Solved: 418[Submit][Status][Discuss] Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <…
Link Solution 有两种解法. 法1: 直接上分治FFT,也就是CDQ分治+FFT. 具体做法是先递归左半边,算出左半边答案之后,将左半边贡献到右半边,然后递归右半边. 分治是一个log的,每次暴力计算贡献是\(\text O(n^2)\)的,考虑用FFT优化计算贡献的过程.总复杂度变成\(\text O(n{log_n}^2)\). 需要注意:因为只算左半边对右半边的贡献,所以f数组右半边应置为0. 法2: 设 \(F(x)=\sum\limits_{i=0}^{\infty}f[i…
题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会超时的. 所以可以用cdq分治来优化. cdq分治就是处理(l, mid)的时候, 将dp[l]...dp[mid]对dp[mid+1]...dp[r]做的贡献都算出来. #include <bits/stdc++.h> using namespace std; #define pb(x) pus…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(313\)取模. \(Solution\) 令\(f_i\)表示组成长度为\(i\)的串的方案数,可以得到递推式:\[f_i=\sum_{j=0}^{i-1}a_{i-j}f_j,\ f_0=1\]或者\(f_i=\sum_{j=1}^{i-1}a_{i-j}f_j+a_i\). 这样暴力是\(O(n^…
Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 647    Accepted Submission(s): 287 Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view,…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数是方案. \( A(x)^{k} \) 的 m 次项系数表示 k 个连续段组成长度为 m 的序列的方案数. \( B(x)=1+F(x)+F^{2}(x)+F^{3}(x)+... \) \( B(x) = \frac{1}{1-F(x)} \)(通过计算B(x)的逆来看出这个式子) 然后多项式求逆…
http://acm.hdu.edu.cn/showproblem.php?pid=5730 分治FFT模板. DP:\(f(i)=\sum\limits_{j=0}^{i-1}f(j)\times a(i-j)\) 递推第i位时要用到0到i-1位,cdq套FFT,考虑每一位上f的贡献即可. 时间复杂度\(O(n\log^2n)\). #include<cmath> #include<cstdio> #include<cstring> #include<algor…
题目链接 题意:给定两个长度为n的数组a与长度为m的数组b, 给定一个操作符op满足 x op y = x < y ? x+y : x-y.  有q个询问,每次给出询问c,问:有多少对(i, j)满足a[i] op b[j] = c ? 0 <= c <= 100000, 其余数据范围在[0, 50000]. 题解:问题的关键在于如何分隔开 x < y与x >= y. cdq分治,合并的时候a[l, mid]与b[mid+1, r]卷积一次计算a[] < b[] , a…
题意:dp[n] = ∑ ( dp[n-i]*a[i] )+a[n], ( 1 <= i < n) cdq分治. 计算出dp[l ~ mid]后,dp[l ~ mid]与a[1 ~ r-l]做卷积运算. #include <bits/stdc++.h> using namespace std; ; ; const double pi = acos(-1.0); struct comp{ ,){r=_r;i=_i;} comp operator+(const comp x){retu…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3507 [题目大意] 将长度为n的数列分段,最小化每段和的平方和. [题解] 根据题目很容易得到dp[j]=min(dp[k]+(s[j]-s[k])2),因为是从前往后转移,且决策单调,因此在CDQ分治的同时进行分治DP即可. [代码] #include <cstdio> typedef long long LL; const int N=500005; int n,M,t; LL f[N],…