假设我们要求解以下的最小化问题: $min_xf(x)$ 如果$f(x)$可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行迭代求解: $x_{k+1} = x_k - a\Delta f(x_k)$ 如果$\Delta f(x)$满足L-Lipschitz,即: 那么我们可以在点$x_k$附近把$f(x)$近似为: 把上面式子中各项重新排列下,可以得到: 这里$\varphi (x_k)$不依赖于x,因此可以忽略. 显然,$\hat f(x,…
逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logistic Regression The data 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定…
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                                                                                \(  \min\limits_x f(x)  \) .如果\( f(x) \)可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行…
L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x∈Rn,f(x)∈R,这里f(x)是一个二阶可微的凸函数,g(x)是一个凸函数(或许不可导),如上面L1的正则化||x||. 此时,只需要f(x)满足利普希茨(Lipschitz)连续条件,即对于定义域内所有向量x,y,存在常数M使得||f'(y)-f'(x)||<=M·||y-x||,那么这个模型…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…
ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定.为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. 数据…
clc;clear; D=1000;N=10000;thre=10e-8;zeroRatio=0.6; X = randn(N,D); r=rand(1,D); r=sign(1-2*r).*(2+2*r); perm=randperm(D);r(perm(1:floor(D*zeroRatio)))=0; Y = X*r' + randn(N,1)*.1; % small added noise lamda=1;stepsize=10e-5; %%% y=x*beta' %%% Loss=0.…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足,均值为0的高斯分布,即正态分布.这个假设是靠谱的,符合一般客观统计规律.若使 模型与测量数据最接近,那么其概率积就最大.概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计.对最大似然函数估计进行推导,就得出了推导后结果: 平方和最小公式 注: 1.x的平方等于x的转置乘以x. 2…
  梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.   为了便于理解,这里我们将使用只含有一个特征的线性回归来展开.此时线性回归的假设函数为: \[ h_{\theta…