spark streaming (二)】的更多相关文章

一.基础核心概念 1.StreamingContext详解 (一) 有两种创建StreamingContext的方式:             val conf = new SparkConf().setAppName(appName).setMaster(master);             val ssc = new StreamingContext(conf, Seconds(1)); StreamingContext, 还可以使用已有的SparkContext来创建         …
铭文一级: ======Pull方式整合 Flume Agent的编写: flume_pull_streaming.conf simple-agent.sources = netcat-sourcesimple-agent.sinks = spark-sinksimple-agent.channels = memory-channel simple-agent.sources.netcat-source.type = netcatsimple-agent.sources.netcat-sourc…
一.nifi基本配置 1. 修改各节点主机名,修改/etc/hosts文件内容. 192.168.0.120 master 192.168.0.121 slave1 192.168.0.122 slave2 具体请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.> 2. 安装zookeeper分布式集群 具体请参考<Kafka:ZK+Kafka+Spark Streaming集…
一.Java方式开发 1.开发前准备:假定您以搭建好了Spark集群. 2.开发环境采用eclipse maven工程,需要添加Spark Streaming依赖. 3.Spark streaming 基于Spark Core进行计算,需要注意事项: 设置本地master,如果指定local的话,必须配置至少二条线程,也可通过sparkconf来设置,因为Spark Streaming应用程序在运行的时候,至少有一条线程用于不断的循环接收数据,并且至少有一条线程用于处理接收的数据(否则的话无法有…
本期内容: 1. Spark Streaming架构 2. Spark Streaming运行机制 Spark大数据分析框架的核心部件: spark Core.spark  Streaming流计算.GraphX图计算.MLlib机器学习.Spark SQL.Tachyon文件系统.SparkR计算引擎等主要部件. Spark Streaming 其实是构建在spark core之上的一个应用程序,要构建一个强大的Spark应用程序 ,spark  Streaming是一个值得借鉴的参考,spa…
转载:https://www.iteblog.com/archives/1326.html 和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据.当作业需要处理的数据来临时,spark通过调用Kafka的简单消费者API读取一定范围的数据.这个特性目前还处于试验阶段,而且仅仅在Scala和Java语言中提供相应的API. 和基于Receiver方式相比,这种方式主要有一些几个优点:…
铭文一级: DataV功能说明1)点击量分省排名/运营商访问占比 Spark SQL项目实战课程: 通过IP就能解析到省份.城市.运营商 2)浏览器访问占比/操作系统占比 Hadoop项目:userAgent DataV访问的数据库(MySQL),需要能够在公网上访问 DataV测试数据CREATE TABLE course_click_count(ID int(4) PRIMARY KEY,day VARCHAR(10),course_id VARCHAR(10),click_count lo…
铭文一级: 第二章:初识实时流处理 需求:统计主站每个(指定)课程访问的客户端.地域信息分布 地域:ip转换 Spark SQL项目实战 客户端:useragent获取 Hadoop基础课程 ==> 如上两个操作:采用离线(Spark/MapReduce)的方式进行统计 实现步骤: 课程编号.ip信息.useragent 进行相应的统计分析操作:MapReduce/Spark 项目架构 日志收集:Flume 离线分析:MapReduce/Spark 统计结果图形化展示 问题 小时级别 10分钟…
官网文档:<http://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example> Spark Streaming提供的提供的理念是一个批次处理一定时间段内的数据,一批次处理接收到的这一批次的数据:而Structured Streaming提供的理念是使用DataFrame/DataSet方式接收流,这样的流是一个可以看做为一个无界的大表,可以持续输出统计结果,而统计结果也会跟随时间(流数据的流…
Centos7出现异常:Failed to start LSB: Bring up/down networking. 按照<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.>配置好虚拟机,正在使用中,让它强制断电后,启动起来发现ip无法访问,而且重启网络失败: 执行:systemctl restart network.service 出现异常:Failed to start LSB: Br…