原文地址: https://yq.aliyun.com/articles/400366 本文来自AI新媒体量子位(QbitAI)     ------------------------------------------------------------------------------------------- 摘要: 本文来自AI新媒体量子位(QbitAI) 地处加拿大埃德蒙顿的阿尔伯塔大学(UAlberta)可谓是强化学习重镇,这项技术的缔造者之一萨顿(Rich Sutton)在这里…
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届国际机器学习会议(ICML 2018)在瑞典斯德哥尔摩成功举办.ICML 2018 所接收的论文的研究主题非常多样,涵盖深度学习模型/架构/理论.强化学习.优化方法.在线学习.生成模型.迁移学习与多任务学习.隐私与安全等,在本文中,腾讯 AI Lab 的研究者结合自身的研究重心和研究兴趣对部分 IC…
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearning与强化学习reinforcementlearning相结合,实现了从感知到动作的端到端的革命性算法.使用DQN玩游戏的话简直6的飞起,其中fladdy bird这个游戏就已经被DQN玩坏了.当我们的Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择 1.算法思想 DQN与Qlean…
 原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== 如何让AI依照人类的意图行事?这是将AI应用于现实世界复杂问题的最大障碍之一. DeepMind将这个问题定义为“智能体对齐问题”,并提出了新的解决方案. 概述了解决agent alignment问题的研究方向.所提出的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实世界问题. 强…
1 DQN的引入 由于q_learning算法是一直更新一张q_table,在场景复杂的情况下,q_table就会大到内存处理的极限,而且在当时深度学习的火热,有人就会想到能不能将从深度学习中借鉴方法,将深度学习的方法应用到强化学习中.13年,谷歌的deepmind团队就发表了关于DQN算法的论文,促进了强化学习的发展,扩展了强化学习的应用场景. 2 将深度学习应用到强化学习的挑战 将深度学习应用到强化学习上主要有两大挑战,下面具体说明这两种挑战是什么 2.1 第一个挑战是关于样本的分布: 深度…
今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战>.本篇论文主要以扑克进行实验,探讨深度强化学习与普通强化学习相比的优势.研究此类游戏不只是可以让程序打赢人类大师,还可以帮助开发算法,应用于更复杂的真实世界环境中,例如机场和网络安全.金融和能源贸易.交通管制和疏导,帮助人们在不完美的信息和高维度信息状态空间中进行决策.深度强化学习不需要依赖人类专家的原有…
这周,机器学习顶级会议 NIPS 2017 的论文评审结果已经通知到各位论文作者了,许多作者都马上发 Facebook/Twitter/Blog/ 朋友圈分享了论文被收录的喜讯.大家的熟人 Facebook 人工智能研究院研究员田渊栋也有一篇论文入选,论文名为「ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games」.这篇论文介绍了他们构建的强化学习研究平台 ELF,为环…
强化学习概况 正如在前面所提到的,强化学习是指一种计算机以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使程序获得最大的奖赏,强化学习不同于连督学习,区别主要表现在强化信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统如何去产生正确的动作.唯一的目的是最大化效率和/或性能.算法对正确的决策给予奖励,对错误的决策给予惩罚,如下图所示: 持续的训练是为了不断提高效率.这里的重点是性能,这意味着我们需要,在看不见的数据和算…
本文不是论文阅读笔记,只是一个学习笔记,重在理解,在严谨程度上可能稍差. AlphaGo 论文指路: Mastering the game of Go with deep neural networks and tree search. Nature, 2016.https://www.nature.com/articles/nature16961 Mastering the game of Go without human knowledge.Nature,2017.https://www.n…
在强化学习(五)用时序差分法(TD)求解中,我们讨论了用时序差分来求解强化学习预测问题的方法,但是对控制算法的求解过程没有深入,本文我们就对时序差分的在线控制算法SARSA做详细的讨论. SARSA这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分. 1. SARSA算法的引入 SARSA算法是一种使用时序差分求解强化学习控制问题的方法,回顾下此时我们的控制问题可以表示为:给定强化学习的5个要素:状态集$S$, 动作集$A$, 即时奖励$R$,衰减因子$\gamma$, 探索率…