CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Cloud 随着CVPR2020入选论文的曝光,一篇关于自动驾驶的文章被录用,该论文提出了一个通用.高性能的自动驾驶检测器,首次实现3D物体检测精度与速度的兼得,有效提升自动驾驶系统安全性能.目前,该检测器在自动驾驶领域权威数据集KITTI BEV排行榜上排名第三.论文是如何解决物体检测难题的? View…
3D目标检测(CVPR2020:Lidar) LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention 论文地址: http://openaccess.thecvf.com/content_CVPR_2020/html/Yin_LiDAR-Based_Online_3D_Video_Object_Detection_W…
作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/pdf/2004.01389.pdf code地址:https://github.com/yinjunbo/3DVID 这是一篇来自北理工和百度合作的文章,目前还未开源,只有项目地址,2020年3月份放置在arxiv上,已经被CVPR2020接收:从标题我们猜测该文采用的时空信息将多帧的点云信息融合做…
CVPR2019:无人驾驶3D目标检测论文点评 重读CVPR2019的文章,现在对以下文章进行点评. Stereo R-CNN based 3D Object Detection for Autonomous Driving 1. introduction 本文提出了完全自动驾驶3D目标检测方法,包括3D图像检测疏密度,语义和几何信息.这个方法命名为Stereo R-CNN,将Faster R-CNN推广到3D图像输入信息,检测和关联左右两部分图像.通过在立体区域建议网络stereo Regio…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的成功能否迁移到PASCAL VOC的目标检测任务上呢?基于这个问题,论文提出了R-CNN. 基本步骤:如下图所示,第一步输入图像.第二步使用生成region proposals的方法(有很多,论文使用的是seletivce search,ImageNet2013检测任务的冠军UVA也使用了该算法)提…
作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN,该网络结构清晰,效果显著,并且能简单移植到其它detector中,带来2-4%的性能提升 论文: Cascade R-CNN: Delving into High Quality Object Detection 论文地址: https://arxiv.org/abs/1712.00726 代码地…
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection>,该论文针对目标检测任务,提出了新的高斯检测框(GBB),及新的计算目标相似性的方法(ProbIoU). 本文分享自华为云社区<论文解读系列十九:用于目标检测的高斯检测框与ProbIoU>,作者:BigDragon. 论文地址: https://arxiv.org/abs/2106.06072…
在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). 目标检测的发展大致起始于2000年前后(具体我也没去深究,如果有误还请大佬们指正 ●ˇ∀ˇ● ),早期受限于算力,目标检测发展的不温不火,直到半导体技术的进步,以及Hinton团队的榜样作用,图像的目标检测才开始有了突飞猛进的发展. 就我个人理解,从2012年至今的目标检测的发展,并没有在算法上呈…
算法发展及对比: 17年底,mask-R CNN YOLO YOLO最大的优势就是快 原论文中流程,可以检测出20类物体. 红色网格-张量,在这样一个1×30的张量中保存的数据 横纵坐标中心点缩放到0-1之间 每一个小网格矩形对应两个不同尺寸比例的物体:竖条,长条;单数是竖着的苗条框,偶数是横着的宽框. bb1和bb2,两个box 分别保存中心点坐标,宽度,高度,置信度 张量后20为,认为其是某一类的当前概率值,置信 后20:是20个之中的哪一类,打个分. bb1和bb2中也有个置信度,是其bo…