就是让你求这个: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5394 解题思路: NOIP2018后第一道题,感觉非常像那个上帝与集合的正确用法. 具体来说就是使用递归的求解方式,不过这次和上帝与集合的正确用法不同的是: 1.这次不是无限项,所以可以不在p=0时停止. 2.因为被取模数有限大,所以要特判小于φ(p)的情况. 3.询问时要预先处理φ(p) 代码: #include<cstdio> #include<cstrin…
题目大意:有$n$个数,每个数为$s_i$,两个操作: $1\;l\;r\;x:$表示将区间$[l,r]$内的数加上$x$ $2\;l\;r\;p:$表示求$s_l^{s_{l+1}^{^{s_{l+2}\dots}}}\bmod p$直到$s_r$ 题解:区间加可以通过树状数组维护,考虑操作二,由扩展欧拉定理可得:$$a^b\equiv\begin{cases}a^{b\bmod{\varphi(p)}} &(a,b)=1\\a^b &(a,b)\not=1,b<\varphi(p…
题目大意:给你一个序列,需要支持区间修改,以及查询一段区间$a_{i}^{a_{i+1}^{a_{i+2}...}}mod\;p$的值,每次询问的$p$的值不同 对于区间修改,由线段树完成,没什么好说的 对于查询,利用"上帝与集合的正确用法"那道题的方法,不断取$\phi(p)$降幂,那么最多迭代$log$层 由于$ai$不一定和$p$互质,需要使用拓展欧拉定理 $ans=ai^{Ans_{i+1}\;mod\;\phi(p)+Ans_{i+1}>=\phi(p)?\phi(p)…
思路:扩展欧拉定理 提交:\(\geq5\)次 错因:快速幂时刚开始没有判断\(a\)是否大于\(p\) 题解: 用树状数组维护差分,查询时暴力从左端点的第一个数向右端点递归,若递归时发现指数变为\(1\),则指数返回\(1\):若递归出右端点,指数也返回\(1\): #pragma GCC optimize (3) #include<cstdio> #include<iostream> #define ll long long #define R register ll usin…
题目 首先考虑没有修改的情况.显然直接暴力扩展欧拉定理就行了,单次复杂度为\(O(\log p)\)的. 现在有了修改,我们可以树状数组维护差分数组,然后\(O(\log n)\)地单次查询单点值. #include<bits/stdc++.h> #define LL long long using namespace std; namespace IO { char ibuf[(1<<21)+1],obuf[(1<<21)+1],st[15],*iS,*iT,*oS=…
跟Uva 10054很像,不过这题的单词是不能反向的,所以是有向图,判断欧拉道路. 关于欧拉道路(from Titanium大神): 判断有向图是否有欧拉路 1.判断有向图的基图(即有向图转化为无向图)连通性,用简单的DFS即可.如果图都不连通,一定不存在欧拉路 2.在条件1的基础上   对于欧拉回路,要求苛刻一点,所有点的入度都要等于出度,那么就存在欧拉回路了   对于欧拉道路,要求松一点,只有一个点,出度比入度大1,这个点一定是起点: 一个点,入度比出度大1,这个点一定是终点.其余点的出度等…
Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000000000,1<=B<=10^1000000). Input There are multiply testcases. Each testcase, there is one line contains three integers A, B and C, separated by a sin…
装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1]*f[n-2].然后a和b系数都是呈斐波那契规律增长的.需要先保存下来指数.但是太大了.在这里不能用小费马定理.要用降幂公式取模.(A^x)%C=A^(x%phi(C)+phi(C))%C(x>=phi(C)) Phi[C]表示不大于C的数中与C互质的数的个数,可以用欧拉函数来求. 矩阵快速幂也不…
Problem 1759 Super A^B mod C Accept: 878    Submit: 2870 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000000000,1<=B<=10^1000000).  Input The…
https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题,后来回来补了一下,因为没有交的地方,于是就测了数据就把代码扔了,,,然后,,昨天的南京网络赛就炸了,,,一样的广义欧拉降幂的板子题,,然后因为忘记了当初自己想出来的那中写法,,一直想着回想起之前的写法,,然后到结束都没弄出来,,,emmmm,, 赛后看了一下别人的解法,,别人的处理方法很巧妙,,当…