Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对Shuffle Write的结果进行处理,从而在调度下游的Task时,下游的Task可以得到其需要的数据. Executor端的处理 在解析BasicShuffle Writer时,我们知道ShuffleMap Task在Executor上运行时,最终会调用org.apache.spark.sche…
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor:在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分…
前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMapTask的结果和ResultTask的结果)是如何产生的:结果是如何处理的:结果是如何读取的. 在Worker上接收Task执行命令的是org.apache.spark.executor.CoarseGrainedExecutorBackend.它在接收到LaunchTask的命令后,通过在Driv…
本文主要关注ShuffledRDD的Shuffle Read是如何从其他的node上读取数据的. 上文讲到了获取如何获取的策略都在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#splitLocalRemoteBlocks中.可以见注释. protected def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = { // Make remo…
在Spark 1.2.0中,Spark Core的一个重要的升级就是将默认的Hash Based Shuffle换成了Sort Based Shuffle,即spark.shuffle.manager 从hash换成了sort,对应的实现类分别是org.apache.spark.shuffle.hash.HashShuffleManager和org.apache.spark.shuffle.sort.SortShuffleManager. 这个方式的选择是在org.apache.spark.Sp…
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑,即需要按照顺序计算的Stage,Stage中包含了可以以partition为单位并行计算的Task.我们并没有分析Stage中得Task是如何生成并且最终提交到Executor中去的. 这就是本文的主题. 从org.apache.spark.scheduler.DAGScheduler#submitMissi…
在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓扑,即须要依照顺序计算的Stage,Stage中包括了能够以partition为单位并行计算的Task.我们并没有分析Stage中得Task是怎样生成而且终于提交到Executor中去的. 这就是本文的主题. 从org.apache.spark.scheduler.DAGScheduler#submitMis…
通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项在前文已经解释过它的含义,由于这些参数的确是非常重要,这里算是做一个详细的总结. 1.1.1  spark.shuffle.manager 前文也多次提到过,Spark1.2.0官方支持两种方式的Shuffle,即Hash Based Shuffle和Sort Based Shuffle.其中在Sp…
首先介绍一下需要实现的接口.框架的类图如图所示(今天CSDN抽风,竟然上传不了图片.如果需要实现新的Shuffle机制,那么需要实现这些接口. 1.1.1  org.apache.spark.shuffle.ShuffleManager Driver和每个Executor都会持有一个ShuffleManager,这个ShuffleManager可以通过配置项spark.shuffle.manager指定,并且由SparkEnv创建.Driver中的ShuffleManager负责注册Shuffl…
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#runJob org.apache.spark.scheduler.DAGScheduler#runJob org.apache.spark.scheduler.DAGScheduler#submit…