首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
k-近邻(KNN) 算法预测签到位置
】的更多相关文章
k-近邻(KNN) 算法预测签到位置
分类算法-k近邻算法(KNN): 定义: 如果一个样本在特征空间中的k个最相似 (即特征空间中最邻近) 的样本中的大多数属于某一个类别,则该样本也属于这个类别 来源: KNN算法最早是由Cover和Hart提出的一种分类算法 计算距离公式: 两个样本的距离可以通过如下公式计算,又叫欧氏距离,比如说 sklearn k-近邻算法API: 问题: 1. k值取多大?有什么影响? k值取很小:容易受到异常点的影响 k值取很大:容易受最近数据太多导致比例变化 2. 性能问题 k-近邻算法的优缺点: 优点…
机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
机器学习-K近邻(KNN)算法详解
一.KNN算法描述 KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近邻算法,就是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(就是上面提到的K个邻居),如果这K个实例的多数属于某个类,就将该输入实例分类到这个类中,如下图所示. 上图中有两种不同类别的样本数据,分别用蓝色正…
查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen """ """ 分析n_neighbors的大小对K近邻算法预测精度和泛化能力的影响 """ from sklearn.datasets import load_breast_cancer from sklearn.model…
[Python] 应用kNN算法预测豆瓣电影用户的性别
应用kNN算法预测豆瓣电影用户的性别 摘要 本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验.利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类型作为属性特征,以用户性别作为标签构建样本集.使用kNN算法构建豆瓣电影用户性别分类器,使用样本中的90%作为训练样本,10%作为测试样本,准确率可以达到81.48%. 实验数据 本次实验所用数据为豆瓣用户标记的看过的电影,选取了274位豆瓣用户最近看过的100部电影.对每个用户的电影类型进行统计.…
TensorFlow实现knn(k近邻)算法
首先先介绍一下knn的基本原理: KNN是通过计算不同特征值之间的距离进行分类. 整体的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN算法要解决的核心问题是K值选择,它会直接影响分类结果. 如果选择较大的K值,就相当于用较大领域中的训练实例进行预测,其优点是…
k近邻(KNN)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合内容: 1.算法概述 K近邻算法是一种基本分类和回归方法:分类时,根据其K个最近邻的训练实例的类别,通过多数表决等方式进行预测:k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的"模型"(Cover和Hart 在1968)--参考自<统计学习方法> 回归是根据k个最近邻预测值计算的平均值--参考自scikit-learn官网 2.算法推导 2.1 kNN三…
K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(curse of dimension) * Machine Learning的Python库很多,比如mlpy(更多packages),这里实现只是为了掌握方法 * MATLAB 中的调用,见<MATLAB分类器大全(svm,knn,随机森林等)> * KNN算法复杂度高(可用KD树优化,C中可以用…
理解KNN算法中的k值-knn算法中的k到底指的是什么 ?
2019-11-09 20:11:26为方便自己收藏学习,转载博文from:https://blog.csdn.net/llhwx/article/details/102652798 knn算法是指对预测集中的每一个图像与训练集中的所有图像比较,寻找出在训练集中与这一张预测图片最接近的图像,将该图像的标签给这张预测图片.实施的方法为图像矩阵相减并取绝对值,然后将得到的像素矩阵各元素相加,找到结果中的最小值,我们说产生这个最小值的图像与该预测图像最接近. 上面所说的是knn算法中当k值等于1的一种…
k近邻 KNN
KNN是通过测量对象的不同特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数. KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 对象相似性衡量 在KNN中,将通过计算各个对象之间的距离来衡量其之间的相似性. (1)欧几里得距离(欧氏距离) (2)曼哈顿距离(城市街区距离) (3)切比雪…