LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\),因为b中的a对答案没有贡献,考虑把b变成\(b-(b/a)*a\)答案是一样的 所以就可以变成了\(gcd(b,a%b)\),保证大的数在前面,这样当小的数变成0,大的数就是最大公约数 exgcd就是解线性方程\(ax+by=c\) 有解的条件是\(c\%gcd(a,b)=0\) 然后考虑gcd的…
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{b-\sqrt d}{2}\). 发现\(A+B=b,AB=\frac{b^2-d}{4}\). 要求的东西是\(A^n\),我们变成\(A^n+B^n-B^n\). 分开考虑,发现\(A^n+B^n=(A^{n-1}+B^{n-1})(A+B)-(A^{n-2}+B^{n-2})AB\),这样子前…
[BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减一,就变成了\(0\).接着后面的数显然还是一个斐波那契数列 只是都乘了\(0\)之前的那个数作为倍数而已. 拿样例举个例子?以下数字都在模\(7\)意义下进行 1 1 2 3 5 0(1) 5 5 3 0(1) 3 3 6 2 0(1) 大概就是这样子. 当然,如果我们继续手玩下去,也许可以发现点…
/* Author: wsnpyo Update Date: 2014-11-16 Algorithm: 快速幂/Fermat, Solovay_Stassen, Miller-Rabin素性检验/Exgcd非递归版/中国剩余定理 */ import random def QuickPower(a, n, p): # 快速幂算法 tmp = a ret = 1 while(n > 0): if (n&1): ret = (ret * tmp) % p tmp = (tmp * tmp) %…
1 什么是快速幂? 快速幂,顾名思义就是快速的求次幂,例如:a^b,普通的算法就是累乘,这样的计算方法的时间复杂度就是O(n),而快速幂的方法使得次幂的计算方法的时间复杂度降低到O(logn).  假设我们要求a^b的结果,这里我们可以将b转换为二进制来求.例如 a^ = a( ^ + ^ + ^ ) = a ^();…
目录 快速幂 快速幂取模 矩阵快速幂 矩阵快速幂取模 HDU1005练习 快速幂 ​ 幂运算:\(x ^ n\) ​ 根据其一般定义我们可以简单实现其非负整数情况下的函数 定义法: int Pow (int x, int n) { int result = 1; while(n--) { result *= x; } return result; } ​ 不难看出此时算法的时间复杂度是\(O(n)\),一旦n取较大数值,计算时间就会大大增加,极其容易出现超时的情况. 快速幂: ​ 首先要在此列举…
(题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 a^b的因子和对9901的余数. 题中给出的数据很大,暴力明显不可取.顺着题目的思路,我们需要表示出a^b的所有约数之和.考虑把a质因数分解,则原式可以表示为: 那么上式的所有因数就是它的质因数的组合相乘构成的集合.令它们求和,可以发现,和式可以因式分解后表示为 这个式子把所求的答案表示成了若干和…
裸快速幂取模,背诵模板用. #include<cstdio> using namespace std; typedef long long LL; LL n=,m,q; LL Quick_Pow(LL a,LL p,LL MOD) { ; LL ans=Quick_Pow(a,p>>,MOD); ans=ans*ans%MOD; )==) ans=ans*a%MOD; return ans; } int main() { scanf("%lld%lld",&am…
根据 高中的数学知识 即可推出 ans=m^n-m*(m-1)^(n-1) .快速幂取模搞一下即可. #include<cstdio> using namespace std; typedef long long ll; #define MOD 100003 ll n,m; ll Quick_Pow(ll x,ll p) { ; ll ans=Quick_Pow(x,p>>); ans=ans*ans%MOD; ) ans=ans*x%MOD; return ans; } int…
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c*t(n-1)+t(n-2)+b.这样的话就可以使用矩阵快速幂进行计算了. 设列矩阵[t(n), t(n-1), 1],它可以由[t(n-1), t(n-2), 1]乘上一个3*3的矩阵得到这个矩阵为:{[c, 1, b], [1, 0, 0], [0, 0, 1]},这样指数部分就可以矩阵快速幂了…
快速幂 问题描述: 计算a ** n % b 其中a.b和n都是32位的非负整数 即求a的n次方对b的余数 问题示例: 例如:2**31%3=2 --- 代码实现如下 class Solution: def fastPower(self, a, b, n): ans = 1 while n > 0: if n % 2 == 1: ans = ans * a % b a = a * a % b n = n / 2 return ans % b if __name__ == '__main__':…
题目链接 题目描述非常直接,要求你用快速幂解决第一问,exgcd解决第二问,bsgs解决第三问. emmmm于是现学bsgs 第二问让求最小整数解好烦啊…… 假设我们要求得方程$ax+by=c(mod p)$的最小整数解 令$d=gcd(a,b)$ 我们求得一个解$x_0,y_0$使得$ax_0+by_0=d(mod p)$ 然后$x_0*frac{c}{d}$为最小整数解. #include<cstdio> #include<cstdlib> #include<algori…
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef long long ll; ll Quick_Pow(ll a,ll p,ll MOD){ if(!p){…
题意:        an=Σ1<=i<=kan-ibi mod 10 000 for n >= k,题意看了好久才懂,有点蛋疼啊, 这个题目要是能看懂题意就简单了,先给你k,然后给你a0 a1 a2 a3 ..ak-1. 然后给你b1 b2 b3 b4 ..bk,然后给你一个i,让你输出ai的值,如果i < k直接输出输入时的ai就行,否则就按照他给的那个公式 an=Σ1<=i<=kan-ibi mod 10 000 for n >= k 比如k=3 那么 a3…
没什么好说的... --------------------------------------------------------------------- #include<cstdio> #include<cmath> #include<map>   using namespace std;   typedef long long ll;   int MOD;   void gcd(int a, int b, int& d, int& x, int…
[bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <map> #include <algorithm> using namespace st…
基础矩阵快速幂何必看题解 #include <bits/stdc++.h> using namespace std; /* 0 1 2 3 4 5 6 7 0 0 0 */ const int mod=10007; struct asd{ int num[4][4]; }; asd mul(asd a,asd b) { asd ans; memset(ans.num,0,sizeof(ans.num)); for(int i=0;i<4;i++) for(int j=0;j<4;j…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所以想办法把边权处理成1: 仔细一看还有一个条件是边权小于10: 所以拆点!把一个点拆成10个点表示到它不同的距离,那么和它相连的那些点就可以跟某个距离的点连边权为1的边: 虽然没有自己想出来,不过1A还是极好的!(因为太简单了) 代码如下: #include<iostream> #include&…
我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : \[6^9 = 6^{2^{3}} \times 6^{2^0} \tag{2} \] 由于一个数变成二进制位数为\(\log _2\boldsymbol{b}\) 位, 故相对于直接求幂 ( b位需要b次计算 ), 时间复杂度减小了 取余 两条基本性质 : \[\left( \boldsymbol…
污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][Status][Discuss] Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数…
https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·ab,第四项是x·y2·a2b,第五项是x2·y3·a4b,第六项是x3y5a7b 可以发现x的指数成1 0 1 1 2 3,y的指数0 1 1 2 3 5,a的指数是0 0 b 2b 4b 7b. x和y的指数为斐波那契数列,a的指数规律为,除去系数b,其第n项前两项之和+1. 由于数据范围很大,所…
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余).在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法.我们先从简单的例子入手:求abmodc 算法1.直接设计这个算法: ; ;i<=b;i++) { ans = ans…
大家都知道RSA的加密的安全性就是能够找到一个合适的大素数,而现在判断大素数的办法有许多,比如Fermat素性测试或者Miller-Rabin素性测试,而这里我用了Miller-Rabin素性测试的算法,具体的理论我写到下面. 算法的理论基础: Fermat定理:若n是奇素数,a是任意正整数(1≤ a≤ n−1),则 a^(n-1) ≡ 1 mod n. 2.  如果n是一个奇素数,将n−1表示成2^s*r的形式,r是奇数,a与n是互素的任何随机整数,那么a^r ≡ 1 mod n或者对某个j…
摘要:本文讲解二维码纠错码字生成使用到的数学数论基础知识,伽罗瓦域(Galois Field)GF(2^8),这是手绘二维码填格子理论基础,不想深究可以直接跳过.同时数论基础也是 Hash 算法,RSA 算法等密码学的入门基础. 二维码生成算法最为核心的就是编码规则和纠错码字的生成.本篇专门讲解纠错涉及到的伽罗瓦域(Galois Field).本文内容大部分是阅读<密码编码学与网络安全>后参考相关 PPT 编写,如有遗漏或不严谨地方请参考专业书籍. 数论基础 整除,因数,素数 设 a , b(…
ACM数论——快速幂 快速幂定义: 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 原理: 以下以求a的b次方来介绍: 把b转换成二进制数.该二进制数第i位的权为  例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹¹转化为算   快速幂位运算: LL pow_mod(LL a, LL b, LL p){//a的b次方取余p LL ret = ; while(b){ )…
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩阵快速乘法 一.整数运算:(快速乘法.快速幂) 先说明一下基本的数学常识: (a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c 对于2进制,2n可用1后接n个0来表示.对于8进制,可用公式 i+3*j ==…
前言 由于需要做一个快速匹配敏感关键词的服务,为了提供一个高效,准确,低能耗的关键词匹配服务,我进行了漫长的探索.这里把过程记录成系列博客,供大家参考. 在一开始,接收到快速敏感词匹配时,我就想到了 KMP 翻译过来叫"看毛片"的算法,因为大学的时候就学过它.听说到它的效率非常高.把原本字符串匹配效率 O(n*m) 缩短到了O(n+m),把✖️变成了➕,真是了不得. 每次我回顾 KMP 算法时,都会发现自己是个小白,或者每次回顾时,都发现上次因为回顾而写的总结居然是错的!所以为了学习快…
题目 Winder最近在学习fibonacci 数列的相关知识.我们都知道fibonacci数列的递推公式是F(n)=F(n-1)+F(n-2)(n>=2 且n 为整数). Winder想知道的是当我们将这个递推式改为F(n)=AF(n-1)+BF(n-2)(n>=2且n为整数)时我们得到的是怎样的数列.但是,Winder很懒,所以只能由你来帮他来完成这件事. 注意,这里我们依然令F(0)=F(1)=1. ★数据输入 输入第一行三个正整数N,A 和B(N<=10:1<=A.B<…
题目描述 Winder 最近在学习 fibonacci 数列的相关知识.我们都知道 fibonacci 数列的递推公式是F(n) = F(n - 1) + F(n - 2)(n >= 2 且 n 为整数). Winder 想知道的是当我们将这个递推式改为F(n) = a * F(n - 1) + b * F(n - 2)(n >= 2 且 n 为整数)时我们得到的是怎样的数列.但是,Winder 很懒,所以只能由你来帮他来完成这件事. 注意,这里我们依然令 F(0)=F(1)=1. 输入格式…
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里用矩阵快速幂 debug了一下午.. 坑点: 1.数论分块的写法要注意,已更新 2.矩阵乘法在赋值回去的时候记得模一下 3.矩阵相乘不可逆,注意看一下 代码: #include<iostream> #include<cstdio> #include<algorithm> #…