为什么CNN能自动提取图像特征】的更多相关文章

1.介绍 在大部分传统机器学习场景里,我们先经过特征工程等方法得到特征表示,然后选用一个机器学习算法进行训练.在训练过程中,表示事物的特征是固定的. 后来嘛,后来深度学习就崛起了.深度学习对外推荐自己的一个很重要的点是--深度学习能够自动提取特征.如果你是从 DNN 开始了解深度学习,你会对 "深度学习能够自动提取特征" 很迷茫.但是如果你是从 CNN 开始了解深度学习的,你就会很自然地理解 "深度学习能够自动提取特征". 2.提取特征 CNN 网络主要有两个算子,…
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文…
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始训练(training from scratch),因为训练代价高,且很难避免过拟合问题.相对的,通常会采用一种更高效的方法--使用预训练网络. 预训练网络的使用通常有两种方式,一种是利用预训练网络简单提取图像的特征,之后可能会利用这些特征进行其他操作(比如和文本信息结合以用于image capti…
[图像算法]图像特征:GLCM SkySeraph Aug 27th 2011  HQU Email:zgzhaobo@gmail.com    QQ:452728574 Latest Modified Date:Aug 27th 2011 HQU -----------------------------------------------------------------------------------------------------------------------------…
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ORB BRISK KAZE AKAZE MESR GFTT good feature to tack Bob斑点 STAR AGAST 接下来分别讲述这是一种图像特征检测算法,但是首先,需要了解OPENCV的一种数据结构, KeyPoint结构,该结构的头文件定义如下: class KeyPoi…
本科毕设做的是医学CT图像特征提取方法研究,主要是肺部CT图像的特征提取.由于医学图像基本为灰度图像,因此我将特征主要分为三类:纹理特征,形态特征以及代数特征,每种特征都有对应的算法进行特征提取. 如上图所示,三类特征都有对应方法进行特征提取,在毕设中,利用matlab编程实现了三类算法,并且利用matlab的GUI做出了一个简单的界面系统,用于特征提取.…
VGG16提取图像特征 (torch7) VGG16 loadcaffe torch7 下载pretrained model,保存到当前目录下 th> caffemodel_url = 'http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel'  th> proto_url='https://gist.github.com/ksimonyan/211839e770f7b53…
Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 这篇文章主要参考的是http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb 可以算是对它…
SAR是主动式侧视雷达系统,且成像几何属于斜距投影类型.因此SAR图像与光学图像在成像机理.几何特征.辐射特征等方面都有较大的区别.在进行SAR图像处理和应用前,需要了解SAR图像的基本特征. 本文主要包括: 成像散射特征 SAR几何特征 SAR图像特征   1.成像散射特征 SAR图像上的信息是地物目标对雷达波束的反映,主要是地物目标的后向散射形成的图像信息.反映SAR图像信息的灰度值主要受后向散射的影响,而影响后向散射的主要因素分为两大类: 雷达系统的工作参数:主要包括雷达传感器的工作波长.…
这个全新的Python音乐创作系列,将会不定期更新.写作这个系列的初衷,是为了做一个项目<基于图像特征的音乐序列生成模型>,实时地提取照片特征,进行神经网络处理,生成一段音乐. 千里之行,始于足下.首先我们要做的是,音乐序列怎么在计算机中表达出来. ============== 首先参考知乎上的相关回答,以及PyPI上和音乐相关的第三方库. 来源:https://www.zhihu.com/question/24590883 另见:https://wiki.python.org/moin/Py…
第三讲_图像特征与描述Image Feature Descriptor 概要 特征提取方法 直方图 对图片数据/特征分布的一种统计:对不同量进行直方图统计:可以表示灰度,颜色,梯度,边缘,形状,纹理,局部特征等 灰度直方图:对量化的bin需要人工选择:量化过宽过窄都不好 聚类 混合样本集中内在群组关系 常用方法:Kmeans,EM算法,Mean Shift;谱聚类,层次聚类等 贪心算法,经常陷入局部最优解(非全局最优) K值和初始中心点选择 颜色特征 量化颜色直方图:适用于RGB,HSV等均匀空…
图像特征描述 什么是图像特征 可以表达图像中对象的主要信息.并且以此为依据可以从其它未知图像中检测出相似或者相同对象 常见的图像特征 常见的图像特征  边缘  角点  纹理 图像特征描述  描述子生成 提取方法 特征提取与描述  SIFT  SURF  HOG  Haar  LBP  KAZE  AKAZE  BRISK DDM  Detection  Description  Matching…
转载地址:http://www.cnblogs.com/skyseraph/archive/2011/08/27/2155776.html 一 原理 1 概念:GLCM,即灰度共生矩阵,GLCM是一个L*L方阵,L为源图像的灰度级 2 含义:描述的是具有某种空间位置关系的两个像素的联合分布,可看成两个像素灰度对的联合直方图,是一种二阶统计 3 常用的空间位置关系:有四种,垂直.水平.正负45° 4 常用的GLCM特征特征: (1)能量:  是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰…
Bag-of-words简单介绍 最初的Bag-of-words ,也叫做"词袋",在信息检索中,Bag-of-words model假定对于一个文本,忽略其词序和语法,句法,将其只看做是一个词集合,或者说是词的一个组合,文本中每一个词的出现都是独立的,不依赖于其它词是否出现. 应用于文本的BoW简单实例 John likes to watch movies. Mary likes too. John also likes to watch football games. 依据上述两句…
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute…
1.cv2.cornerHarris(gray, 2, 3, 0.04)  # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内…
[普兒原创, 如有错误和纰漏欢迎指正. 更新中...] 1. 颜色直方图 颜色空间在本质上是定义在某种坐标系统下的子空间,空间中的每一个坐标表示一种不同的颜色.颜色空间的目的在于给出某种颜色标准,使得不同的设备和用途都能对颜色有一致的描述.这里主要介绍两种不同的颜色空间,包括RGB颜色空间和CIE-Lab颜色空间,如图4-2所示. (a)RGB颜色空间; (b)CIE-Lab颜色空间 图1 颜色空间示意图 RGB颜色空间是定义在三维笛卡尔坐标系中的颜色模型,每一种颜色定义在3个主颜色分量红(R)…
D:\文件及下载相关\文档\Visual Studio \Projects\image_match3\image_match #include "opencv2/core/core.hpp" #include "highgui.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include "…
#include "opencv2/core/core.hpp" #include "highgui.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/legac…
1.HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主要…
mingus在输出midi文件的时候,使用这样的函数: from mingus.containers import NoteContainer from mingus.midi import midi_file_out nc = NoteContainer(["A", "C", "E"]) midi_file_out.write_NoteContainer("test.mid", nc) 在输出时会报错: Traceback…
目前我能想到的办法是这样的: 1,提取照片中的实体特征,借用某个pre-trained model进行tag标记. 2,将特征组合起来,形成一个bag-of-word model,然后将这个向量作为输入.进入CNN. 3,手动对照片贴标签,主要是对情感进行分类(如:安静.快乐,这样可以直观调节旋律) 4,将图片本身的这个特征向量,与情感标签一起作为旋律的生成参数. 首先要做的是提取照片中的实体特征.这是一个非常庞大的工程,需要很多的预训练.但是幸运地是,我手上的Azure付费订阅,可以支撑微软的…
jishude 首先援引一个资料网页:http://www.cosmosshadow.com/ml/%E5%BA%94%E7%94%A8/2016/03/01/%E9%9F%B3%E4%B9%90%E7%94%9F%E6%88%90.html 这个网页可以让基础薄弱的人对于乐理有一个全面的感知. 这个项目有一个重要的中间数据,用来连接前后两个深度神经网络,那就是图像的特征. 图像的特征可以是一个特征向量,用来作为音乐生成的隐性参数.但是为了宏观上控制音乐序列,我们需要显式地定义一些规则:拍子.调…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
# -*- coding: utf-8 -*- #2018-2-19 14:30:30#Author:Fourmi_gsj import cv2 import numpy as np import pylab as pl from PIL import Image import skimage.io as io from skimage import data_dir,data,filters,color,morphology import matplotlib.pyplot as plt fr…
1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift, 谱聚类(密度聚类), 层次聚类 kmeans聚类 选取k个类中心,随机选取 计算每个点跟k个类中心的位置 把数据点分配给距离最近的一个类中心 计算新的类中心-对该类中的所有点取均值 类中心数K的选取 K类平均质心的距离加权平均值, 当k=5时的斜率发生变化,我们可以选取5作为分类…
从即日起到7月20号,项目成员进行了第一次任务分配. 赵同学A.岳同学.周同学,负责了图像数据的情感数据集制作,他们根据自己的经验,对图像进行了情绪提取. 赵同学B全权负责向量映射这一块的网络搭建. 我除了帮助其他成员完成任务以外,还要搭建好音乐生成的LSTM网络,同时预搭建音乐数据集.…
这个项目主要涉及到两个网络,其中卷积神经网络用来提取图片表达的情绪,提取出一个二维向量. 网络结构如图: 词向量采用预训练的glove模型,d=50,其他信息包括了图片的“空旷程度”.亮度.对比度等信息,用来更好地描述图片特征. 对于图中的卷积神经网络,需要讲解的地方是:卷积核是一个一维卷积核,每一层卷积层之后都连接了池化层,做的是最大值池化,每一层之间有固定的dropout层,最后输出的向量与我们预先设定的label进行计算,损失函数定义为 \[J(\theta)=-\sum_iy'_i\lo…
我之前就注意到,深度学习和音乐结合,尤其是从乐理出发进行结合(而不是纯粹的进行音乐生成),是一个尚未被深度挖掘的全新领域.可想而知,这个方向符合我要求的数据肯定是要自己搜集了. 自己搜集的数据,在量上就已经输了,只是考虑到我们要做的任务并不复杂,准确的说只是一个分类器,再加一个LSTM而已.对于这个分类器,甚至不需要用卷积神经网络,可以使用一些其他的网络:而LSTM的样本本来就蕴含了很明确的规律,变化并不是很大. 那么我们就要开始思考,除了一些常规的训练方法,还有什么训练适合小样本数据吗? 1.…
1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独下载的文件. 2.使用预训练的模型提取特征 打开test_vgg16.py,做如下修改: import numpy as np import tensorflow as tf import vgg16 import utils img1 = utils.load_image("./test_data…