深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50856583 声明:版权所有,转载请联系作者并注明出处 1.引言 本系统是基于CVPR2015的论文<Deep Learning of Binary Hash Codes for Fast Image Retrieval>实现的海量数据下的基于内容图片检索系统,250w…
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入需要FQ,我也顺带巩固下,做个翻译,不好之处请包含指正. 当然需要安装python,教程推荐使用python3.如果是Mac,可以参考博…
前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络.并把其PPT的參考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入须要FQ,我也顺带巩固下,做个翻译.不好之处请包括指正. 当然须要安装python,教程推荐使用python3.假设是Mac,能够參考博主的另外两片博文,Mac下升级python2.7到python3.6, Mac安装tensorflow1.0 好多专业词…
一.深度学习建模与调试流程 先看训练集上的结果怎么样(有些机器学习模型没必要这么做,比如决策树.KNN.Adaboost 啥的,理论上在训练集上一定能做到完全正确,没啥好检查的) Deep Learning 里面过拟合并不是首要的问题,或者说想要把神经网络训练得好,至少先在训练集上结果非常好,再考虑那些改善过拟合的技术(BN,Dropout 之类的).否则的话回去检查三个 step 哪里有问题. Deep Learning 中的方法为了解决两个主要问题而提出:1.训练集做得不好:2.训练集做得好…
深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy). 目录 前言 1.定义模型函数 2.交叉验证(Cross-validation) 3.优化算法 4.激活函数(activation) 5.dropout 6.early stopping 模型训练实战案…
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
NLP related basic knowledge with deep learning methods  2017-06-22   First things first >>>>>>>>>>>>>>>>>>>>>>>> Some great blogs: 1. https://github.com/udacity/deep-learning/blob/mas…
目录 I. ARCNN 1. Motivation 2. Contribution 3. Artifacts Reduction Convolutional Neural Networks (ARCNN) II. DnCNN 1. Introduction 2. Denoising Convolutional Neural Networks (DnCNN) network III. Li et al. IV. DCAD 1. Introduction 2. Deep CNN-based Auto…
一.INTRODUCTION部分 (1)先根据时间轴讲了历史 (2)常见的基础模型 (3)讲了深度学习的优势 那就是feature learning,而不用人工划分的feature engineering:为什么要用深层网络而不是浅层网络,深层网络适合相当多的情况而浅层网络不一定计算量小,也就是说浅层网络不适合很多情况. 并用大量文献数据展示了实验结果 总结一下INTRODUCTION部分,有以下几个结论: 后面三个部分,详细介绍了目标识别.目标分割和目标检测,有兴趣可以参考ppt全文: htt…
ResNet可以说是在过去几年中计算机视觉和深度学习领域最具开创性的工作.在其面世以后,目标检测.图像分割等任务中著名的网络模型纷纷借鉴其思想,进一步提升了各自的性能,比如yolo,Inception-v4等. ResNet通过重构模型对残差映射(Residual mapping)进行拟合,而非以往那样拟合期望的潜在映射(Underlying mapping).借助这一举措,ResNet解决了"退化问题"(Degradation problem),使得训练数百甚至数千层网络成为可能,且…