题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注意凸包后点数不再是n 吐槽 凸包后点数是n,bzoj上就过了??? solution #include <cstdio> #include <cstdlib> #include <cstring> #include <cctype> #include <c…
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; ; int n; struct node{dou…
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, 输出所求矩形的面积和四个顶点坐标 Input 第一行为一个整数n(3<=n<=50000) 从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法 Output 第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位), 接下来4行每行表示一个顶点坐标,要求第一行为y坐…
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solved: 653[Submit][Status][Discuss] Description Source 计算几何 vfleaking提供Spj 竟然1A了........哈哈哈哈哈哈哈哈哈哈 首先猜有一条边是凸边上的边(理由:不是的话我不会做) 然后旋转卡壳,最上面就是距离最远的点,最右面是点积最大,…
1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用斜率判定. 旋转卡壳:枚举一条边,用叉积和点积维护另外三条边(联系叉积和点积的几何意义,叉积最大即为对边,点积最大最小即为邻边) 找来5份标程对拍……啥?4个不同的输出,相同的两个完全是错的…… 自己拍吧T_T(花了一下午) 神TM卡double #include<cmath> #include&…
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸包内的顶点也一定能被覆盖 结论:这个矩形的一条边一定与凸包的一条边重合. 然后对于凸包的每一条边\(\vec{s_is_{i+1}}\),我们通过旋转卡壳找到最左侧的点l,最右侧的点r,最高点p,过p做\(\vec{s_is_{i+1}}\)的平行线,过l,r做\(\vec{s_is_{i+1}}\…
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸包,然后旋转卡壳. 在旋转卡壳中有一个结论:最小覆盖矩形一定有一条边在凸包上. 所以先枚举矩形在凸包上的那条边(p[i],p[i+1]),然后利用单调性找出p[i]的对踵点p[u]. 至于左右两侧的切点p[l]和p[r],要利用它们连线在直线(p[i],p[i+1])上投影长度的单调性求出. 最后将…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳.两边的那个点可以用点积的最小/大来判断,因为是投影. 然后调了一万年.不过好像把精度设成 1e-13 而不是 1e-8 就能过了. 和许多代码对拍,有各种各样的不同.也不知道自己是不是真的对了. #include<cstdio> #include<cstring> #include&l…
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"string.h" #include"math.h" #define M 50006 #define eps 1e-10 #include"stdlib.h" #define inf 999999999 typedef struct node { double x,…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. (证不来,网上好像也没看到证明...诶...) 通过结论,问题转化为枚举凸包每条边,然后求出当矩形的一条边在该边所在的直线上时的最小矩形. 即我们需要求出在凸包上,相对与这条边的最右边,最上面和最左边的点, 而最上面的点可以通过叉积得到最优位置, 最左和最右就可以通过点积的到最优位置,(一个点积最大,…
题面 BZOJ题面 前置芝士 建议先学习向量相关的计算几何基础 计算几何基础戳这里 思路 用这道题学习一下凸包和旋转卡壳 首先是凸包部分 凸包 求凸包用的算法是graham算法 算法流程如下: 找到$y$坐标最小的一点作为原点 对原点之外的所有点按照到原点的极角排序(这里因为选取了最靠下的,所以极角范围在$[0,\pi]$) 依次遍历所有排序后的点,加入一个单调栈中:每次判断(栈顶元素和栈顶第二元素之间的斜率)是否大于(当前点和栈顶第二元素之间的斜率) 注意一旦这个大于成立了,栈顶元素就会在当前…
题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前,加上或减去一个\(eps\)来处理 \(C++\)中\(printf\)输出\(0.00000\)会变成\(-0.00000\),需要特判 用叉积点乘判距离大小,正负方向不要搞错 求凸包记得排序 #include<algorithm> #include<iostream> #inclu…
传送门 不难看出最后的矩形一定有一条边与凸包某条边重合. 因此先求出凸包,然后旋转卡壳求出当前最小矩形面积更新答案. 代码: #include<bits/stdc++.h> #define N 50005 #define eps 1e-9 using namespace std; struct pot{ long double x,y; inline pot operator+(const pot&a){return (pot){x+a.x,y+a.y};} inline pot op…
程序写的太垃圾,卡不过去. GG,甘拜下风. #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)…
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1426  Solved: 648[Submit][Status][Discuss] Description Input   Output   Sample Input   Sample Output   HINT   Source 计算几何 vfleaking提供Spj #include<cstdio> #inclu…
传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这条边最远的点以及这个矩形两端的点,这五个点构成的矩形就是一个可能的答案了. 各种判断用向量叉积和点积 注意一下输出\(-0.0000\)的情况 #include<bits/stdc++.h> #define ld long double #define eps 1e-8 //This code i…
  就是一道凸包(枚举凸包的边作为矩形的一条边)的裸题,只是不太好打,所以犹豫到今天才打 不说了,说起AC都是泪啊,因为没有精度判断,没有判重(算距离时除0了)错了好久 拍了好久都和标称是一样的,因为我是随机生成数据,基本不可能有重复的点 代码请自动无视...193行pascal(都是一坨一坨的) const eps=1e-7; var x,y:..]of extended; s:..]of longint; p:..,..]of longint; n,tot:longint; sp:exten…
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solved: 853[Submit][Status][Discuss] Description 题解 显然矩形一边一定在凸包一边上 旋转卡壳维护其他三条边经过的顶点 更新答案 这题1A欸嘿嘿 代码 //by 减维 #include<iostream> #include<cstdio> #inc…
[BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边的垂线的最靠左和最靠右的两个点. 最远点很容易求,叉积计算面积来比就好了. 那么剩下两个点呢? 比如说找右侧的那个点,我们假装当前枚举出来的这条边就是水平线,那么只要当前的点和下一个点的直线与\(x\)轴正半轴夹角小于\(90°\) 显然就往这个方向走.然后从水平线换到一般的情况,也就是和枚举的这条…
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920[Submit][Status][Discuss] Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, 输出所求矩形的面积和四个顶点坐标   Input 第一行为一个整数n(3<=n<=50000) 从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科…
题意 题目描述 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点坐标 输入输出格式 输入格式: 第一行为一个整数n(3<=n<=50000),从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法 输出格式: 第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位),接下来4行每行表示一个顶点坐标,要求第一行为y坐标最小的顶点,其后按逆时针输出顶点坐标.如果用相同y坐标,先输出最小x坐标的顶点 输入输出样例 输入样例#1: 复制 6…
题目链接 嗯,毒瘤题. 首先有一个结论,就是最小矩形一定有条边和凸包重合.脑补一下就好了. 然后枚举凸包的边,用旋转卡壳维护上顶点.左端点.右端点就好了. 上顶点用叉积,叉积越大三角形面积越大,对应的高也就越大.两边的点用点积,点积越大投影越大. 然后就是精度问题.这种实数计算最好不要直接用比较运算符,要用差和\(eps\)的关系来比较,我就是一直卡在这里.还好有爆炸\(OJ\)离线题库提供的数据... #include <cstdio> #include <cmath> #inc…
给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> #include<cmath> #include<ctime> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<…
题目描述 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点坐标 输入输出格式 输入格式: 第一行为一个整数n(3<=n<=50000),从第2至第n+1行每行有两个浮点数,表示一个顶点的x和y坐标,不用科学计数法 输出格式: 第一行为一个浮点数,表示所求矩形的面积(精确到小数点后5位),接下来4行每行表示一个顶点坐标,要求第一行为y坐标最小的顶点,其后按逆时针输出顶点坐标.如果用相同y坐标,先输出最小x坐标的顶点 输入输出样例 输入样例#1: 复制 6 1.…
传送门 首先这个矩形的一条边肯定在凸包上.那么可以求出凸包然后枚举边,用类似旋转卡壳的方法求出另外三条边的位置,也就是求出以它为底最上面最右边最左边的点的位置.离它最远的点可以用叉积求,最左最右的可以用点积求.顺便注意精度问题,因为很小的时候可能会输出-0.00000,所以特判一下,当坐标小于eps的时候强制它等于0就行了 //minamoto #include<bits/stdc++.h> #define fp(i,a,b) for(register int i=a,I=b+1;i<I…
参考:https://blog.csdn.net/qpswwww/article/details/45334033 讲的很清楚 做法比较像旋转卡壳但是具体是不是我也不清楚.. 首先知道只要求出每种方案在圆上和圆中的和就可以. 注意到题目中有一个限制:"保证任何三个房子都不在同一条直线 上,任何四个房子都不在同一个圆上.",所以考虑构成圆的三个点和需要判断的第四个点组成的四边形: 对于凹四边形,只有一种情况,第四个点一定在圆内: 对于凸四边形,第四个点可能在园中,圆上,圆外,其中园中,圆…
http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解去看它 http://www.cnblogs.com/TheRoadToTheGold/p/8253800.html 精度真是卡的我醉生梦死,w(゚Д゚)w    O(≧口≦)O bzoj改成long double 就过了 洛谷仍处于 输出x.99999,答案输出x+1.00000 输出-0.00000,答案输出0.00000 救命啊~~~~(>_<)~~~~ 来自大佬的建议:输出do…
求出凸包后,矩形的一条边一定与凸包的某条边重合. 枚举每条边,求出离它最远的点和离它最左最右的点,因为那三个点是单调变化的,所以复杂度为$O(n)$. 注意精度. #include<cstdio> #include<algorithm> #include<cmath> #define N 50010 using namespace std; typedef double D; struct P{D x,y;P(){}P(D _x,D _y){x=_x,y=_y;}}p[…
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 1114  Solved: 505 [Submit][Status][id=1185" style="color:blue; text-decoration:none">Discuss] Description 凸包+旋转卡壳 首先有一个结论:矩形一定有一条边在凸包上,否则我们旋转之后一定会得…
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 所以可以利用旋转卡壳的思想找到这样的三个点 以每一条边作为基础,循环n次得到n个这样的矩形,找到其中面积最小的即可 然后自己画画图,作出矩形对应的两条边的单位向量,那么这四个点就非常好求了 #include <iostream> #include <cstdio> #include &…