【原】Kryo序列化篇】的更多相关文章

Kryo是一个快速有效的对象图序列化Java库.它的目标是快速.高效.易使用.该项目适用于对象持久化到文件或数据库中或通过网络传输.Kryo还可以自动实现深浅的拷贝/克隆. 就是直接复制一个对象对象到另一个对象,而不是对象转换为字节然后转化为对象. 目前已经被用在下列项目中: KryoNet (NIO networking) Twitter's Scalding (Scala API for Cascading) Twitter's Chill (Kryo serializers for…
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里).2.远程通信,即在网络上传送对象的字节序列. 这篇文章写的不错https://blog.csdn.net/wangloveall/article/details/7992448 [Spark序列化与反序列化场景] 在Spark中,主要有三个地方涉及序列化与反序列化…
原文链接:在Spark中自定义Kryo序列化输入输出API 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况下,Spark使用的是Java的ObjectOutputStream系列化框架,它支持所有继承java.io.Serializable的类系列化,虽然Java系列化非常灵活,但是它的性能不佳.然而我们可以使用Kryo 库来系列化,它相比Java serialization系列化高效,速度很快(通常比…
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化. 由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便于更新内容 压缩和序列化相关 spark.serializer 默认为org.apache.spark.serializer.JavaSeriali…
Spark默认采用Java的序列化器,这里建议采用Kryo序列化提高性能.实测性能最高甚至提高一倍. Spark之所以不默认使用Kryo序列化,可能的原因是需要对类进行注册. Java程序中注册很简单: SparkConf conf = new SparkConf().setAppName(appName); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); con…
spark序列化  对于优化<网络性能>极为重要,将RDD以序列化格式来保存减少内存占用. spark.serializer=org.apache.spark.serializer.JavaSerialization Spark默认 使用Java自带的ObjectOutputStream 框架来序列化对象,这样任何实现了 java.io.Serializable 接口的对象,都能被序列化.同时,还可以通过扩展 java.io.Externalizable 来控制序列化性能.Java序列化很灵活…
声明:本文转自<在Spark中自定义Kryo序列化输入输出API>   在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况下,Spark使用的是Java的ObjectOutputStream系列化框架,它支持所有继承java.io.Serializable的类系列化,虽然Java系列化非常灵活,但是它的性能不佳.然而我们可以使用Kryo 库来系列化,它相比Java serialization系列化高效,速…
简介 最近几年,各种新的高效序列化方式层出不穷,不断刷新序列化性能的上限,最典型的包括: 专门针对Java语言的:Kryo,FST等等 跨语言的:Protostuff,ProtoBuf,Thrift,Avro,MsgPack等等 这些序列化方式的性能多数都显著优于hessian2(甚至包括尚未成熟的dubbo序列化).有鉴于此,我们为dubbo引入Kryo和FST这 两种高效Java序列化实现,来逐步取代hessian2.其中,Kryo是一种非常成熟的序列化实现,已经在Twitter.Group…
背景 今天在开发SparkRDD的过程中出现Buffer Overflow错误,查看具体Yarn日志后发现是因为Kryo序列化缓冲区溢出了,日志建议调大spark.kryoserializer.buffer.max的value,搜索了一下设置keyo序列化缓冲区的方法,特此整理记录下来. 20/01/08 17:12:55 WARN scheduler.TaskSetManager: Lost task 1.0 in stage 1.0 (TID 4, s015.test.com, execut…
1.概述 上一篇我们了解了MapReduce的相关流程,包含MapReduce V2的重构思路,新的设计架构,与MapReduce V1的区别等内容,今天我们在来学习下在Hadoop V2中的序列化的相关内容,其目录如下所示: 序列化的由来 Hadoop序列化依赖图详解 Writable常用实现类 下面,我们开始学习今天的内容. 2.序列化的由来 我们知道Java语言对序列化提供了非常友好的支持,在定义一个类时,如果我们需要序列化一个类,只需要实现该类的序列化接口即可.场景:让一个AppInfo…