exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使用方式为 tf.train.exponential_decay( ) 在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数(实现指数衰减学习率). 在训练模型时,通常建议随着训练的进行逐步降低学习率.该函数需要`global_step`值来计算衰减的学习速…
exponential_decay(learning_rate,  global_steps, decay_steps, decay_rate, staircase=False, name=None) 使用方式: tf.tf.train.exponential_decay() 例子: tf.train.exponential_decay(self.config.e_lr, self.e_global_steps,self.config.decay_steps, self.config.decay…
转载请注明出处:http://www.cnblogs.com/willnote/p/6758953.html 官方API定义 tf.argmax(input, axis=None, name=None, dimension=None) Returns the index with the largest value across axes of a tensor. Args: input: A Tensor. Must be one of the following types: float32…
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at: 在使用tensorflow 中的tf.variable_scope和tf.get_variable搭建网络时,重复运行程序会报以上的ValueError错误,这是因为第二次运行时,内存中已经存在名字相同的层或者参数,发生了冲突,所以会提示…
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存 sess = tf.Session(config=config) 1. 记录设备指派情况 :  tf.Conf…
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get_variable函数的作用从tf的注释里就可以看出来-- 'Gets an existing variable with this name or create a new one'. 与 tf.get_variable 函数相对的还有一个 tf.Variable 函数,两者的区别是: tf.Va…
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存 sess = tf.Session(config=config) 1. 记录设备指派情况 :  tf.Conf…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)config.gpu_o…
指明函数的入口,即从哪里执行函数. 如果你的代码中的入口函数不叫main(),而是一个其他名字的函数,如test(),则你应该这样写入口tf.app.run(test()) 如果你的代码中的入口函数叫main(),则你就可以把入口写成tf.app.run()…
TensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行.在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止的时候, 队列必须能被正确地关闭.TensorFlow提供了两个类来实现对Session中多线程的管理:tf.Coordinator和 tf.QueueRunner,这两个类往往一起使用. Coordinator类用来管理在Session中的多个线程,可以用来同时停止多个工作线程并且向那个在等待所有…
在采用随机梯度下降算法训练神经网络时,使用 tf.train.ExponentialMovingAverage 滑动平均操作的意义在于提高模型在测试数据上的健壮性(robustness). tensorflow 下的 tf.train.ExponentialMovingAverage 需要提供一个衰减率(decay).该衰减率用于控制模型更新的速度.该衰减率用于控制模型更新的速度,ExponentialMovingAverage 对每一个(待更新训练学习的)变量(variable)都会维护一个影…
Training | TensorFlow tf 下以大写字母开头的含义为名词的一般表示一个类(class) 1. 优化器(optimizer) 优化器的基类(Optimizer base class)主要实现了两个接口,一是计算损失函数的梯度,二是将梯度作用于变量.tf.train 主要提供了如下的优化函数: tf.train.Optimizer tf.train.GradientDescentOptimizer tf.train.AdadeltaOpzimizer Ada delta tf.…
学习率的三种调整方式:固定的,指数的,多项式的 def _configure_learning_rate(num_samples_per_epoch, global_step): """Configures the learning rate. Args: num_samples_per_epoch: The number of samples in each epoch of training. global_step: The global_step tensor. Re…
在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分分布不一样,那么网络的泛化能力会变得非常差.而且对于训练的数据,每批分布也是不一样的,那么网络在迭代的过程中也要学习和适应不同的分布.这会大大降低网络的训练速度.此外,数据的分布对于激活函数来说也非常重要,有时数据分布范围太大不利于利用激活函数的非线性特性,比如激活函使用Sigmoid函数时,会导致…
神经网络训练过程中,根据每batch训练数据前向传播的结果,计算损失函数,再由损失函数根据梯度下降法更新每一个网络参数,在参数更新过程中使用到一个学习率(learning rate),用来定义每次参数更新的幅度. 过小的学习率会降低网络优化的速度,增加训练时间,过大的学习率可能导致网络参数在最终的极优值两侧来回摆动,导致网络不能收敛.实践中证明有效的方法是设置一个根据迭代次数衰减的学习率,可以兼顾训练效率和后期的稳定性. 分段常数衰减 分段常数衰减是在事先定义好的训练次数区间上,设置不同的学习率…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…
目录 1. 指数衰减 2. 分段常数衰减 3. 自然指数衰减 4. 多项式衰减 5. 倒数衰减 6. 余弦衰减 6.1 标准余弦衰减 6.2 重启余弦衰减 6.3 线性余弦噪声 6.4 噪声余弦衰减 Reference   上文深度神经网络中各种优化算法原理及比较中介绍了深度学习中常见的梯度下降优化算法:其中,有一个重要的超参数--学习率\(\alpha\)需要在训练之前指定,学习率设定的重要性不言而喻:过小的学习率会降低网络优化的速度,增加训练时间:而过大的学习率则可能导致最后的结果不会收敛,…
通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点. tensorflow中提供了多种学习率的调整方式.在https://www.tensorflow.org/api_docs/python/tf/compat/v1/train搜索decay.可以看到有多种学习率的衰减策略. cosine_decay exponential_decay inverse_time_decay linear_cosine_decay natural_ex…
#-*-coding:utf8-*- __author = "buyizhiyou" __date = "2017-11-21" import random, time, os, decoder from PIL import Image import numpy as np import tensorflow as tf import pdb import decoder import random ''' 在汉字ocr项目中,利用基于attention的enco…
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_size表示一个batch的大小,num_threads表示使用几个线程进行执行 import tensorflow as tf import numpy as np def generate_data(): num = 25 label = np.asarray(range(0, num)) im…
关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,大家自己…
在自定义数据集中: example = tf.train.Example(features=tf.train.Features(feature={ 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels)) })) 下面简要谈一谈我对其的理解创建 Example…
import tensorflow as tf weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.contrib.layers.l1_regularizer(0.5)(weights)) 5.0 >>> sess.run(tf.keras.regularizers.l1(0.5)(weights)) 5.0 >>> sess.run(tf.keras.regularize…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量.公司产能等的一种常用方法.移动平均法适用于即期预测.当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的.移动平均法根据预测时使用的各元素的权重不同 移动平均法是一种简单平滑预测技术,它的基本思…
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np import tensorflow as tf import struct import glob import os from PIL import Image import time __sony__ = 0 __huawei__ = 1 __blackberry__ = 2 __stage_raw2ra…
1. tf.train.Saver() tf.train.Saver()是一个类,提供了变量.模型(也称图Graph)的保存和恢复模型方法. TensorFlow是通过构造Graph的方式进行深度学习,任何操作(如卷积.池化等)都需要operator,保存和恢复操作也不例外. 在tf.train.Saver()类初始化时,用于保存和恢复的save和restore operator会被加入Graph.所以,下列类初始化操作应在搭建Graph时完成. saver = tf.train.Saver()…
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数经常会用到,max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,但是这样…