#coding=utf-8 #1.数据预处理 import numpy as np #导入模块,numpy是扩展链接库 import pandas as pd import tensorflow import keras from keras.utils import np_utils np.random.seed(10) #设置seed可以产生的随机数据 from keras.datasets import mnist #导入模块,下载读取mnist数据 (x_train_image,y_tr…
主要内容: 1.基于多层感知器的mnist手写数字识别(代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64.exe (当时TF还不支持python3.6,又懒得在高版本的anaconda下配置多个Python环境,于是装了一个3-4.2.0(默认装python3.5),建议装anaconda3的最新版本,TF1.2.0版本已经支持python3.6!) 3.TensorFlow1.1.0 先贴代码: #…
1 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import matplotlib.pyplot as plt import numpy as np mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) #下载据数 print('train images:',mnist.train.…
一.手写数字识别 现在就来说说如何使用神经网络实现手写数字识别. 在这里我使用mind manager工具绘制了要实现手写数字识别需要的模块以及模块的功能:  其中隐含层节点数量(即神经细胞数量)计算的公式(这只是经验公式,不一定是最佳值): m=n+l−−−−√+am=n+l+a  m=log2nm=log2⁡n  m=nl−−√m=nl  m: 隐含层节点数 n: 输入层节点数 l:输出层节点数 a:1-10之间的常数 本例子当中: 输入层节点n:784 输出层节点:10 (表示数字 0 ~…
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  多层感知器MLP(multilayer perception) 1.1.1          多层感知器的结构 除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构.,假设输入层用向量X表示,则隐藏层的输出就是 f (W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的…
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from keras.utils import np_utils np.random.seed(10) # In[2]: from keras.datasets import mnist # In[3]: (x_train_image,y_train_label),(x_test_image,y_test_label…
#基于mnist数据集的手写数字识别 #构造了三层全连接层组成的多层感知机,最后一层为输出层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense,Dropout from keras.optimizers import RMSprop (x_train,…
在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但是这样的实践对机器学习的理解是大有裨益的.在大多数情况下,我们还是希望能多简单就多简单地去搭建网络模型,这同时也算对得起TensorFlow这个强大的工具了.本节,还是以手写数据集MNIST为例,利用TensorFlow2.0的keras高层API重现之前的网络. 一.数据的导入与预处理 关于这个过程,与上节…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
参考:台大李宏毅老师视频课程-Keras-Demo 在载入数据阶段报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接 Google之后找到一篇内容相近博文:手写数字识别---demo 问题解决步骤: 1-去官网下载了数据集: 数据集网址(宝可梦大师课程里也有提到过):http://yann.lecun.com/exdb/mnist/ 2-将下载好的数据集放在一定的位置 将如下代码另存为一个文件load_data.py,后面直接i…