题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵个数减去全为\(0\)的子矩阵个数,单调栈搞一搞就好了 //minamoto #include<bits/stdc++.h> #define R register #define inline __inline__ __attribute__((always_inline)) #define fp…
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1\le N\le 10^3\),\(val_{(i,j)} \le 2^{31}-1\). 题解 一眼题. 对于这种位运算的题,题都不用看完先想拆位,拆位可行那就拆,拆位不可行就不拆. 这里指的拆位可不可行具体指的是答案满不满足对于拆位之后的可加性. 发现这个题所求的是个和,那就果断拆开. 这样的话问题就变…
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include <bits/stdc++.h> #define gc getchar using namespace std; typedef long long ll; const int N = 1000 + 4; const int P = 1e9 + 7; const int BIT = 31; int n…
LOJ#3083. 「GXOI / GZOI2019」与或和 显然是先拆位,AND的答案是所有数字为1的子矩阵的个数 OR是所有的子矩阵个数减去所有数字为0的子矩阵的个数 子矩阵怎么求可以记录每个位置能向上延伸的高度\(h[i][j]\) 枚举左下角的端点,用一个单调栈维护即可 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_p…
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代表着水平位置,纵坐标代表着飞行高度. 在最初的计划中,这 \(n\) 架飞机首先会飞行到起点 \(x = x_{st}\) 处,其中第 \(i\) 架飞机在起点处的高度为 \(y_{i,0}\).它们的目标是终点 \(x = x_{ed}\) 处,其中第 \(i\) 架飞机在终点处的高度应为 \(y…
题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y\)到根节点的路径和就是了 那么\(k\neq 1\)的情况该怎么办呢?我们来考虑一下令\(1\)到\(i\)的路径上每个节点权值加\(1\)的本质,相当于是令每个节点\(u\)增加\({dep_u}^k-{dep_{fa_u}}^k\),那么用树剖+线段树维护就行了 //minamoto #inc…
题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\(c_{0,u}\neq c_{1,v}\),那么我们就用\(d_{0,u}+d_{1,v}+w\)更新答案 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define inline __inl…
题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1=1\) 然后设\(f_i\)表示可以放\(1\times 1\)方块的方案.如果最右边一列不放\(1\times 1\),那么转移和之前一样,否则的话,另一个\(1\times 1\)必须放在\(1\)到\(i-2\)列,且根据奇偶性另一个方块放的位置是唯一的,而第一个方块左边全都是\(1\time…
题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数点 关于暴力数点,这个曼哈顿距离很麻烦,先把它转成切比雪夫距离,然后就是一个\(KDtree\)的经典操作了 容易发现交换操作的执行次数上界是\(tot\)(其中\(tot\)是交点个数),下界是\(n-cnt\)(其中\(cnt\)是原数组和飞过去之后的数组形成的一个置换,其中的轮换个数) 证明的…
题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\),设\(f[i][j][k][l][x][y]\)表示考虑前\(i\)种牌,以第\(i-2\)种牌为开头的顺子张数为\(j\),以\(i-1\)为开头的顺子张数为\(k\),以\(i\)开头的顺子张数为\(l\),杠子加面子总数为\(x\),雀头个数为\(y\),的最大权值 注意一些边界条件,比方…
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 或和. 分析: 或和与是一个东西,只要把所有数都异或上\((1<<31)-1\)然后再从总答案中减掉就能互相转化,考虑求与. 枚举每一位,转化成算有多少个全\(1\)子矩形,单调栈经典问题.总时间复杂度\(\mathrm{O}(n^2\log n)\). 代码: #include <cst…
LOJ#3088. 「GXOI / GZOI2019」旧词 不懂啊5e4感觉有点小 就是离线询问,在每个x上挂上y的询问 然后树剖,每个节点维护轻儿子中已经被加入的点的个数个数乘上\(dep[u]^{k}\) 新加一个点进去只会经过\(\log n\)条轻边只会更新\(\log n\)个节点 然后再维护一下每个子树里被加入点的个数,每次查询一段重链的链尾要加上重儿子个数减去从y来的那个轻儿子的子树个数乘上\(dep[u]^k\) #include <bits/stdc++.h> #define…
LOJ#3087. 「GXOI / GZOI2019」旅行者 正着求一遍dij,反着求一遍,然后枚举每条边,从u到v,如果到u最近的点和v能到的最近的点不同,那么可以更新答案 没了 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar('…
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数然后乘上N就是不合法的方案 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #…
LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小值 对向交换最大化是每个点都对向交换 擦身而过最大化需要对向交换最小化,我们一次对向交换相当于交换任意两个数,所以就是每个置换圈的点数-1累加即可 #include <bits/stdc++.h> #define fi first #define se second #define pii pai…
题意 LOJ传送门 题解 可以发现「七对子」 和 「国士无双」直接暴力就行了. 唯一的就是剩下的"3*4+2". 考试的时候写了个爆搜剪枝,开了O2有50pts.写的时候发现可以DP,但是没写. 然后下来写了发现就4个转移... 用\(dp[i][j][k][a][b][c]\)表示当考虑前\(i\)张牌,有\(j\)个雀头,\(k\)个面子,\(i-2\)用了\(a\)张,\(i-1\)用了\(b\)张,\(i\)用了\(c\)张时,前\(i-3\)张牌的最大分数. 注意这里是&qu…
题目 我还是太傻了 考虑每一条边的贡献,对于一条有向边\((u,v,w)\),我们求出\(k\)个关键点中到\(u\)最近的距离\(dis_1\),以及\(v\)到\(k\)个关键点中最近的距离\(dis_2\),直接用\(dis_1+w+dis_2\)来更新答案就好了 所以正反两遍\(Dij\)就好 但是需要注意到一点,如果这两个点\(k\)个关键点中到\(u\)最近的点和\(v\)最近的·点相同,那么我们不能计入答案,因为这样只是走了一个环 代码 #include<queue> #incl…
题目 确定这不是思博题 看起来很神仙,本来以为是\([LNOI2014]LCA\)的加强版,结果发现一个点的贡献是\(s_i\times (deep_i^k-(deep_i-1)^k)\),\(s_i\)就是这个点的子树内部\(1\)到\(x\)点的数量 我们发现我们在树剖的时候利用后面那个东西就能来更新答案和打标机啦 照样离线就好了 #include<cstdio> #include<cstring> #include<iostream> #include<al…
题目 广西和贵州的省选?好像很神仙的样子啊 之后发现这是一道水题 我们显然应该拆位考虑 显然我们应该对于每一位都拆一下看看这一位是\(0/1\) 显然我们如果找到一个全是\(1\)的矩阵,那么这一位的\(and\)和不为\(0\),否则就是\(0\) 对于\(or\)和,我们只需要求出全是\(0\)的矩阵,之后拿总矩阵数量一减就是至少有一个\(1\)的矩阵的数量,这样的矩阵\(or\)和这一位显然是\(1\) 于是问题转化成了求有多少个全\(0\)全\(1\)矩阵 我们预处理出每一个位置往右最多…
题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \times 1$ 的砖块! ITX351 由此产生了一个邪恶的想法:他想要在这条路上故意把两块 $1 \times 1$ 的砖块分开铺,**不让两块砖有相邻的边**,其他砖块可以随意铺,直到整条路铺满.这样一定可以逼死自身强迫症 sea5! 也许下面的剧情你已经猜到了——他为此兴奋不已,以至于无法敲键…
题意 给定一个 \(n\) 个点 \(m\) 条边的的有向图,给出 \(k\) 个关键点,求关键点两两最短路的最小值. \(n\le 10^5, m\le 5\cdot 10^5\). 题解 二进制分组.对于每一位,将编号当前位为 \(0\) 的点做源点/汇点, 当前位为 \(1\) 的点做汇点/源点,然后跑最短路. 复杂度 \(O(n\log ^2 n)\) . #include<cstdio> #include<cstring> #include<algorithm>…
菜鸡wwb因为想不出口胡题所以来写题解了 A. chess 昨天晚上考试,有点困 开考先花五分钟扫了一边题,好开始肝$T1$ 看了一眼$m$的范围很大,第一反应矩阵快速幂?? $n$很小,那么可以打$n^4$的DP, $10min$过去了,好像就是一个$DP$啊,随便乘个组合数就好了, 最后距离考试$20min$时,因为瞎取模,把自己的$AC$覆盖了kukukuku 正解的话,首先对于第一列而言,第$1+n$列的放的$C$的个数与他相同 但是因为只知道数目我们乘上组合数就好 $f_{ij}$表示…
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1\) 至 \(n\))其中第 \(i\) 个物品会在 \(T_i\) 时刻出现. 在 \(0\) 时刻时,小 G 可以任选 \(n\) 个物品中的一个,我们将其编号记为 \(s_0\).并且如果 \(i\) 时刻选择了物品 \(s_i\),那么 \(i + 1\) 时刻可以继续选择当前 物品或者选择…
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生的你对这个活动非常感兴趣.你每天都要从西向东经过教学楼一条很长的走廊,这条走廊是如此的长,以至于它被人戏称为 infinite corridor.一次,你经过这条走廊的时,注意到在走廊的墙壁上隐藏着 \(n\) 个等长的二进制的数字,长度均为 \(m\).你从西向东将这些…
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变量为k \(\sum\limits_1^n(a_i-(b_i+k))^2\) \(\sum\limits_1^n(a_i^2-2*a_i*(b_i+k)+(b_i+k)^2)\) \(\sum\limits_1^n(a_i^2-2*a_i*b_i-2*a_i*k+b_i^2+2*b_i*k+k^2)…
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变成 \(\displaystyle \lfloor \frac{N}{k} \rfloor\) ,到 \(1\) 停止. 求一共有多少不同的操作序列,也就是操作次数不一样或者某次操作的 \(k\) 不相同. 题解 首先考虑 dp ,令 \(f_i\) 为以 \(i\) 为开头的不同操作序列数. 显然…
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_i\) , \(B\) 是已死猎人的 \(w_i\) 的总和 , \(P_i\) 是 \(i\) 当前要被杀死的概率 ... (抄博客咯) 不难有 \(\displaystyle P_i = \frac{w_i}{A-B} \tag{1}\) 如果 不考虑猎人死没死 , 都能被当做目标 qwq (鞭…
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 , 考虑了并且在独立集中 , 还没考虑 . 转移就很显然了 qwq 然后要优化嘛 , 把其中两个状态合起来 , 也就是分成考虑了和没考虑了的两种 . 其中考虑了的那种 , 只会存在两种状态 , 要么是在独立集内 , 要么就是与独立集联通 , 没有考虑的 绝对不和独立集联通 就行了 . 然后我们枚举…
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spire 题解 首先我们考虑拿到一副牌如何打是最优的,不难发现是将强化牌从大到小能打就打,最后再从大到小打攻击牌 . 为什么呢 ? 证明(简单说明) : 如果不是这样 , 那么我们就是有强化牌没有用 , 且攻击牌超过两张 . 我们考虑把最小的那张攻击牌拿出来 , 然后放入一张强化牌 . \(\becau…
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> #include<algorithm> inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9')c = getchar(); while(c <= '9' &&…