简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下.下面将无约束项优化算法的细节进行描述.为了尊重别人的劳动成果,本文的出处是:http://blog.csdn.net/itplus/article/details/21896453 . 从这里我们可以看出:要想迭代出Xk+1,就只需要计算Dk+1即可.DFP算法是对Dk+1的一个近似…
在<统计学习方法>这本书中,附录部分介绍了牛顿法在解决无约束优化问题中的应用和发展,强烈推荐一个优秀博客. https://blog.csdn.net/itplus/article/details/21896453…
此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ }\approx \text{ }f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }+\frac{1}{2}{{\mathbf{\delta }}^{T}}\cdot {{\nabla }^{2}}f…
一.牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f^{'}(x_0)} \] 得牛顿法迭代公式: \[x^{k+1}=x^k-\frac{f(x^k)}{f^{'}(x^k)} \] 对于最优化问题 令导数等于零,得最优解,所以迭代公式为 \[x^{k+1}=x^k-\fra…
转自 https://blog.csdn.net/itplus/article/details/21897443…
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}=-{{\mathbf{S}}_{k}}\cdot \nabla f({{\mathbf{x}}_{k}})$ 关键就是这里的${{\mathbf{S}}_{k}}$,主要有两拨人对拟牛顿法做出了贡献他们分别针对${{\mathbf{S}}_{k}}$,提出了两种不同的方法:注:下式中的${{\mathbf{\…
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向:      如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法.梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解.一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的.梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下…
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用): 牛顿法是基于目标函数的二阶导数(Hesse 矩阵)的,其收敛速度较快,迭代次数较少,尤其是在最优值附近时,收敛速度是二次的.但牛顿法的问题在于当海森矩阵稠密时,每次迭代的计算量比较大,因为每次都会计算目标函数的海森矩阵的逆,这样一来,当数据维度较高时,不仅计算量…
2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤为: Step1:选择一个初始出点${{\mathbf{x}}_{0}}$(这里的${{\mathbf{x}}_{0}}$是向量),设置一个收敛误差$\varepsilon $(解的精度)和一个迭代次数$k=0$: Step2:找到从点${{\mathbf{x}}_{k}}$使函数$f(x)$下降最…
锁(lock)的代价 锁是用来做并发最简单的方式,当然其代价也是最高的.内核态的锁的时候需要操作系统进行一次上下文切换,加锁.释放锁会导致比较多的上下文切换和调度延时,等待锁的线程会被挂起直至锁释放.在上下文切换的时候,cpu之前缓存的指令和数据都将失效,对性能有很大的损失.操作系统对多线程的锁进行判断就像两姐妹在为一个玩具在争吵,然后操作系统就是能决定他们谁能拿到玩具的父母,这是很慢的.用户态的锁虽然避免了这些问题,但是其实它们只是在没有真实的竞争时才有效. Java在JDK1.5之前都是靠s…