P4494-[HAOI2018]反色游戏【圆方树】】的更多相关文章

P4494 [HAOI2018]反色游戏 题意 给你一个无向图,图上每个点是黑色或者白色.你可以将一条边的两个端点颜色取反.问你有多少种方法每个边至多取反一次使得图上全变成白色的点. 思路 若任意一个连通块黑色点的个数为奇数那么无解. 先考虑树的情况.发现如果是树,并且黑点个数为偶数,有且仅有一种方式达到目标.然后发现,对于一个无向图,它的任意一个生成树若有解,那么其他非树边无论是否取反都有且仅有一种情况达到目标,并且充分.所以答案就是 \(2^{m-n+1}\). 考虑不联通的情况,每多一个连…
题面 传送门 题解 我们先来考虑一个联通块,这些关系显然可以写成一个异或方程组的形式,形如\(\oplus_{e\in edge_u}x_e=col_u\) 如果这个联通块的黑色点个数为奇数,那么显然这个方程是无解的 证明:每条边都在方程组的左边出现了两次,左边全部异或起来为\(0\),右边全部异或起来为\(1\),显然无解 那么如果这个方程组有解,解的个数就是\(2^{自由元数目}\) 我们随便求出这个联通块的一棵生成树,把所有树边当成自由元,容易发现对于非树边的每一种选法,树边都有一种唯一对…
bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑点的连通块 如果是一棵树,那么方案只有一种,因为所有叶子颜色都确定,可以自底向上一层层推出每一条边是否反色 下面考虑一个图,随便找一棵生成树,那么如果其他非树边都不反色就只有一种.假设其它非树边是否反色都已确定,那么相当于这棵生成树的每个点的初始颜色确定,所以每一种非树边的选取方案都对应着一种反色方…
[BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个有\(2\)个\(1\)的\(01\)串. 那么把边构建线性基,最终的答案显然就是\(2\)的不在线性基里的边数次方. 显然每次只需要考虑一个联通块,一个联通块随便拉出一棵生成树,就可以在线性基上确定\(n-1\)个元,那么对于其他边任意的情况,显然可以通过修改这\(n-1\)条边的选择情况使得最终…
bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| $ . 上虚树. 就是将圆方树构建好后每次询问一个连通块的圆点个数. #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; tem…
题目传送门:loj bzoj 题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方.我们观察一下方程,就可以发现自由元数量=边数-点数+连通块数,或者换句话说,若对原图的每个联通块指定一棵生成树,那么确定了生成树之外的边是否进行操作,那么生成树内的边的操作方案就是一定存在并唯一确定的. 那么我们就只需要判断一下什么样的图无解.我们发现每对一条边进行操作,原图内的黑点数量奇偶性不变,那么我们只需判断图中的是否存在某个联通块有…
题目链接 LOJ:https://loj.ac/problem/2524 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5303 洛谷:https://www.luogu.org/problemnew/show/P4494 Solution 精神污染 假设所有点都是连通的,很显然如果黑点个数为奇数个则无解,否则可以证明一定有解. 那么随便整出一棵生成树,然后反色一些边使其合法,显然一棵树只有一种情况. 考虑非树边的贡献,如果非树边不反色显然无…
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着道路走到任意其他城市. 现在小C已经占领了其中至少两个城市,小Q可以摧毁一个小C没占领的城市,同时摧毁所有连接这个城市的道路. 只要在摧毁这个城市之后能够找到某两个小C占领的城市u和v,使得从u出发沿着道路无论如何都不能走到v,那么小Q就能赢下这一局游戏. 小Q和小C一共进行了q局游戏,每一局游戏会…
[SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中的圆点个数减去\(S\).问题变成了怎样求这样的连通块中的圆点个数,直接给结论吧:先搞出树的dfs序,把询问的点按dfs序从小到大排一遍序,每次把答案加上第\(i\)和第\(i + 1\)个点之间的圆点个数,但是不算lca,再加上第\(1\)个和第\(S\)个点之间的圆点个数,然后除以二就得到了这个…
题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点间路径权值,最后除以2就好了. 因为这个前缀和统计不到根节点,所以要加上当前虚树的根节点的权值,即(LCA(A1,AK)<=n). 话说这是二轮的题啊?? 为什么我当时不知道圆方树和虚树→_→而且怎么好多人都不知道的样子.. 有些前几了,第一个Rank1..激动 //36624kb 4516ms #…
传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有DP,所以其实没有必要将虚树建立起来,只需要维护一个链并就可以了. #include<bits/stdc++.h> //This code is written by Itst using namespace std; inline int read(){ int a = 0; char c =…
暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于是首先,对一个连通块,若其中黑点个数为奇数则必然无解,否则考虑求出它的一棵生成树.然后当我们选择一条非树边(u,v)时,只需要将树上u,v两点间的所有边的选取情况取反,就又得到一个合法方案.于是答案为$2^{m-n+1}$.进一步可以发现,设原图连通块个数为c,则答案为$2^{m-n+c}$. 现在…
首先发现对于一个联通块有奇数个黑点,那么总体来说答案无解.这个很容易想,因为对每个边进行操作会同时改变两个点的颜色,异或值不变. 然后一个朴素的想法是写出异或方程进行高斯消元. 可以发现高斯消元的过程实际上就是合并两个点的过程,如果是一棵树的话那么答案一定是2. 对于树上每多的一条边,它在合并点的过程中会被消除掉,这意味着这个是一个自由元.所以我们发现连通图的答案是$2^{m-n+1}$. 这样第一问答案就可以求了.判完无解后答案为$2^{m-n+d}$,$d$为联通块数. 对于第二问,如果有超…
https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始建的想法就有问题,答案竟然还差不多,查了好久才发现……然后重新想了个正确的建法发现比之前那个错误的建法好写多了,气),然后把这棵树整成虚树再做个树上dp就(安排得)明明白白的了.dp的时候注意一下树的根的值也要统计. 我的程序大概常数太大了洛谷开O2才能过,BZOJ会tle,也不想改了,就这样吧………
Description Solution 对于一个有偶数个黑点的连通块,只需要任意两两配对,并把配对点上的任一条路径取反,就可以变成全白了 如果存在奇数个黑点的连通块显然无解,判掉就可以了 如果有解,解的数量肯定是一样的(白点被取反偶数次,黑点奇数次) 一共有 \(2^{m}\) 种染色方案,有 \(2^{n-1}\) 把点染成偶数个白色的方案,因为每一种方案可以产生的解是一样的,那么就有 \(2^{m-n+1}\) 种解 所以对于每一个连通块产生的贡献就是 \(2^{m-n+1}\),如果有…
题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条无向边的图,每个点都有一个 \(\in [0,1]\) 的权值,每次可以选择一条边,然后将该边相连两点权值异或上 \(1\).问有多少种选择方法使得每个点的权值都变为 \(0\).(每条边只能选择一次) 但是这个问题太简单了,所以你要求删掉每个点以及它连出的边之后的答案. 有 \(t\) 组数据,\(t\le 5,n,m\le 10^5\). 思路 这道题不是很难写,但是很难想. 我们先考虑一棵树的答案,你发现这样方案是唯一的,因为…
[Luogu4494] [BZOJ5303] [LOJ2524] LOJ有数据就是好 原题解,主要是代码参考 对于每一个联通块(n个点),其他的边一开始随便选,只需要n-1条边就可以确定最终结果. 所以设\(cnt\)为联通块数 , 答案为 \(2^{m-n+cnt}\) 还有就是有解的情况必须是黑点个数为偶数,还要注意有删掉这个点可能使无解变有解,这比从有解变无解更难想 #include<cstdio> #include<iostream> #include<cstring…
正题 题目链接:https://www.luogu.com.cn/problem/P4494 题目大意 给出\(n\)个点\(m\)条边的一张无向图,节点有\(0/1\),每条边可以选择是否取反两边的点. 开始求将所有节点变为\(0\)的方案,然后对于每个点询问删去这个点之后的方案 \(1\leq T\leq 5,1\leq n,m\leq 10^5\) 解题思路 图的比较麻烦,先考虑树上的,那么每条边取不取反取决于它连接的子节点的黑白,但是根节点却无法这么调整.所以如果黑色个数为奇数个那么方案…
[BZOJ5329][SDOI2018]战略游戏(圆方树,虚树) 题面 BZOJ 洛谷 Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着道路走到 任意其他城市.现在小C已经占领了其中至少两个城市,小Q可以摧毁一个小C没占领的城市,同时摧毁所有连接这 个城市的道路.只要在摧毁这个城市之后能够找到某两个小C占领的城市u和v,使得从u出发沿着道路无论如…
传送门 思路 先考虑两点如何使他们不连通. 显然路径上所有的割点都满足条件. 多个点呢?也是这样的. 于是可以想到圆方树.一个点集的答案就是它的虚树里圆点个数减去点集大小. 可以把点按dfs序排序,然后统计相邻两点距离和首尾两点距离之和. 为了防止一个点被统计多次,把点权改为边权,再额外算上lca是圆点的情况. 另外,写完这题之后P4320就是双倍经验了. 代码 #include<bits/stdc++.h> clock_t t=clock(); namespace my_std{ using…
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情况 P4606 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define…
喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出答案. 所以在虚树上DP即可. 代码极丑 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using namespac…
QWQ深受其害 当时在现场是真的绝望...... 现在再重新来看这个题 QWQ 根据题目所说,我们可以发现,对于每一个集合中的节点,我们实际上就是要求两两路径上的割点的数目 考虑到又是关于点双的题目,而且在图上,我们并没有很好的办法去做. 这时候就要考虑建出来圆方树,然后我们对于圆方树 的每个点,维护他到根的路径上的圆点个数 那么,我们该怎么求两两路径的割点总数呢(一看到数据范围,就想到虚树了啊) 冷静分析一下,发现真的直接把虚树中的点弄出来就是合法的,因为两两的路径一定会通过\(lca\),而…
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做起来十分舒服. 仙人掌的基环DP 首先勾出一棵有根生成树. 那么树边上正常转移即可. 我们把返祖边形成的环归到环上深度最浅的点上,即环顶. 那么到环顶时,单独跑一遍关于环的\(DP\)即可. 一般写法为: void dfs(RG int u,RG int From) { dfn[u] = low[u] = +…
仙人掌&圆方树 Tags:图论 [x] [luogu4320]道路相遇 https://www.luogu.org/problemnew/show/P4320 [ ] [SDOI2018]战略游戏 https://www.luogu.org/problemnew/show/P4606 [x] [APIO2018]铁人两项 https://www.luogu.org/problemnew/show/P4630 [ ] [SHOI2008]仙人掌图 [ ] [BZOJ4316]小C的独立集 [x]…
目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Tourists 「SDOI 2018」「洛谷 P4606」战略游戏 「BZOJ 4316」小C的独立集 「洛谷 P5236」「模板」静态仙人掌 「HNOI 2009」「洛谷 P4410」无归岛 圆方树的定义   圆方树是由一个无向图转化出的树形结构.转化方法为: 所有原图的点为"圆点". 对于每个点…
我写这篇博客的原因 证明我也是学过圆方树的 顺便存存代码 前置技能 双联通分量:点双 然后就没辣 圆方树 建立 新建一个图 定义原图中的所有点为圆点 对于每个点双联通分量(只有两个点的也算) 建立一个方点,向所有的点双内的点连边 性质 一定是个森林 每个点双有唯一的方点 圆点方点相间分布,相同点不相邻 等等 例子 1 题面 求可以出现在两点之间的简单路路径上的点的最大权值,不带修改 分析 考虑用圆方树来解决 设圆点权值为本身,方点权值为点双中的最大权值 那么就是树上的路径最大权值 例子 2 还是…
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn_clk; //初始化dfn和low数组 stk[++tp] = u; //把u加入栈中 for(int i = head[u]; i; i = e[i].next) { int v = e[i].to; if(!dfn[v]) { //v还未访问 tarjan(v); //先访问 low[u] =…
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图片想看起来舒服一点,也可以把图片变成这样子 (图片来源于网络) 2.DFS树 为啥要写这个?--因为这个看起来也可以解决一些仙人掌的问题. 对于一个仙人掌,我们随便构建出一棵生成树. 然后我们就多了一些边--可以叫返祖边,非树边--你想叫啥就叫啥. 因为每条边只会出现在一个环中, 所以每一条返祖边覆盖了树中…
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c)的数量. 思路: 对每一个连通块建一棵圆方树,然后可以按照圆点和方点做不同的树形dpdpdp. 圆点:找存在于两棵不同子树的点对数 方点:找存在于三颗不同子树的点对数. 代码: #include<bits/stdc++.h> #define ri register int using namesp…