一.前言 AgileEAS.NET SOA 中间件平台是一款基于基于敏捷并行开发思想和Microsoft .Net构件(组件)开发技术而构建的一个快速开发应用平台.用于帮助中小型软件企业建立一条适合市场快速变化的开发团队,以达到节省开发成本.缩短开发时间,快速适应市场变化的目的. AgileEAS.NET SOA中间件平台提供了敏捷快速开发软件工程的最佳实践,通过提供大量的基础支撑功能如IOC.ORM.SOA.分布式体系及敏捷并发开发方法所支撑的插件开发体系,以及提供了大量的实体.数据模型设计生…
承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系统崩溃的问题以及解决方案: 缓存--->热: 预热:热数据 解决方案中和架构设计中,会引入大数据的实时计算技术---> storm: 为什么引入这storm,必须是storm吗,我们后面面去讲解那个解决方案的时候再说: 为什么引入storm: 因为一些热点数据相关的一些实时处理方案,比如快速预热,…
Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额. 在高并发场景下,提供了保证线程安全的对象.方法.比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好.线程安全的StringBuilder取代String.StringBuffer等等(Java在多线程这块实现是非常优秀和成熟的). Java…
背景 在做性能测试的时候,传统方式都是用并发虚拟用户数来衡量系统的性能(站在客户端视角),一般适用于一些网页站点例如首页.H5的压测:而RPS(Requests per second)模式主要是为了方便直接衡量系统的吞吐能力TPS(Transaction Per Second,每秒事务数)而设计的(站在服务端视角),按照被压测端需要达到TPS等量设置相应的RPS,应用场景主要是一些动态的接口API,例如登录.提交订单等等. VU(虚拟用户)和TPS之间也有其逻辑关系,具体请参见本文下方的说明.…
最近遇到一例,HBase 指定大量列集合的场景下,并发拉取数据,应用卡住不响应的情形.记录一下. 问题背景 退款导出中,为了获取商品规格编码,需要从 HBase 表 T 里拉取对应的数据. T 对商品数据的存储采用了 表名:字段名:id 的列存储方式.由于这个表很大,且为详情公用,因此不方便使用 scanByPrefixFilter 的方式,担心引起这个表访问的不稳定,进而影响详情和导出的整体稳定性. 要用 multiGet 的方式来获取多个订单的指定列字段的数据,需要动态生成相应的列名集合,然…
本文来自网易云社区 作者:张伟 关于HashMap在并发场景下的问题有很多人,很多公司遇到过!也很多人总结过,我们很多时候都认为这样都坑距离自己很远,自己一定不会掉入这样都坑.可是我们随时都有就遇到了这样都问题,坑一直都在我们身边.今天遇到了一个非线程安全对象在并发场景下使用的问题,通过这个案例分析HashMap 在并发场景下使用存在的问题(当然在这个案例中还有很多问题值得我们去分析,值得大家引以为戒.)通过分析问题产生都原因,让我们今后更好远离这个BUG. 代码如图所示,大家都应该知道Hash…
package xxx; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 高并发场景下System.currentTimeMillis()的性能问题的优化 * <p><p> * System.currentTimeMillis()的调用比new一个普通对象要耗时的多(具体耗时高出多少我还没测试过,有人说是100…
高并发场景下System.currentTimeMillis()的性能问题的优化 package cn.ucaner.alpaca.common.util.key; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 高并发场景下System.currentTimeMillis()的性能问题的优化 * <p><p>…
C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读多写少的场景出发,探讨其解决方案,以其更好的实现高并发. 不同的业务场景,读和写的频率各有侧重,有两种常见的业务场景: 读多写少:典型场景如广告检索端.白名单更新维护.loadbalancer 读少写多:典型场景如qps统计 本文针对读多写少(也称一写多读)场景…
概述 一谈到高并发的优化方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读多写少的场景出发,探讨其解决方案,以其更好的实现高并发.不同的业务场景,读和写的频率各有侧重,有两种常见的业务场景: 读多写少:典型场景如广告检索端.白名单更新维护.loadbalancer 读少写多:典型场景如qps统计 本文针对读多写少(也称一写多读)场景下遇到的问题进行分析,并探讨一种合适的解…