机器学习二 逻辑回归作业   作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57维特征,2分类问题.采用逻辑回归方法.但是上述数据集在kaggle中没法下载,于是只能用替代的方法了,下了breast-cancer-wisconsin数据集. 链接在这http://archive.ics.uci.edu/ml/machine-learning-databases/breast-c…
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN Day7,我们学习了K最近邻算法(k-NN),了解了其定义,如何工作,介绍了集中常用的距离和k值选择.Day8,作者转回之前的逻辑回归内容,推荐了Saishruthi Swaminathan的一篇文章. 身处墙内,这个链接无法打开.不过也不用跳墙看原文,找了一下,发现已有博主翻译过…
Lineage逻辑回归分类算法 线性回归和逻辑回归参考文章: http://blog.csdn.net/viewcode/article/details/8794401 http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html 1.概述 Lineage逻辑回归是一种简单而又效果不错的分类算法 什么是回归:比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能…
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小…
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏.        Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别).        回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优…
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False import pandas as pd import numpy as…
Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代…
1. 梯度计算式导出 我们在博客<统计学习:逻辑回归与交叉熵损失(Pytorch实现)>中提到,设\(w\)为权值(最后一维为偏置),样本总数为\(N\),\(\{(x_i, y_i)\}_{i=1}^N\)为训练样本集.样本维度为\(D\),\(x_i\in \mathbb{R}^{D+1}\)(最后一维扩充),\(y_i\in\{0, 1\}\).则逻辑回归的损失函数为: \[\mathcal{l}(w) = \sum_{i=1}^{N}\left[y_{i} \log \pi_{w}\l…
注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准). 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多.从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类. 在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出.模…
逻辑回归:问题只有两项,即{0, 1}.一般而言,回归问题是连续模型,不用在分类问题上,且噪声较大,但如果非要引入,那么采用逻辑回归模型. 对于一般训练集: 参数系统为: 逻辑回归模型为:      (sigmoid函数)      参数求解 对于逻辑回归用来分类{0, 1}问题,假设满足伯努利模型: 可以将上式写为一般形式为: 为了得到参数θ,求最大似然估计[2],可以得到: 为了简化问题,采用ln函数,即对数似然,可以得到: 这里为了最大似然估计使参数最大化,有两种方法求解: 采用梯度上升的…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交…
一.基础理解 问题:逻辑回归算法是用回归的方式解决分类的问题,而且只可以解决二分类问题: 方案:可以通过改造,使得逻辑回归算法可以解决多分类问题: 改造方法: OvR(One vs Rest),一对剩余的意思,有时候也称它为  OvA(One vs All):一般使用 OvR,更标准: OvO(One vs One),一对一的意思: 改造方法不是指针对逻辑回归算法,而是在机器学习领域有通用性,所有二分类的机器学习算法都可使用此方法进行改造,解决多分类问题: 二.原理 1)OvR 思想:n 种类型…
基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度下降). 链接1:简析python3深浅复制与赋值 https://cloud.tencent.com/developer/news/53299 Python3中赋值操作其实是对象的引用,相当于起了个别名,赋值关系,即整个内外层对象的引用,内外层都指向同一内存. :SGD详解 https://www…
在说逻辑回归之前,可以先说一说逻辑回归与线性回归的区别: 逻辑回归与线性回归在学习规则形式上是完全一致的,它们的区别在于hθ(x(i))为什么样的函数 当hθ(x(i))=θTx(i)时,表示的是线性回归,它的任务是做回归用的. 当时,表示的是逻辑回归,假定模型服从二项分布,使用最大似然函数推导的,它的任务是做分类用的,逻辑回归是一个广义的线性模型,是对数线性模型. 下面就是逻辑回归的推导过程了 首先我们来看看核函数即sigmoid函数的对Z的导数 这个结果在后续的推导过程会用到,这里的Z我们可…
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值.我们会使用逻辑回归算法来解决分类问题. 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题.类似的例子还有很多,例如一个在线交易网站判断一次交易是否带有欺诈性(有些人可以使用偷来的信用卡,你懂的).再如,之前判断一个肿瘤是良性的还是恶性的,也是一个分类问题. 在以上的这些例子中,我们想预测的是一个二值的变量,或者为0,或者为1:或者…
一.基础理解 使用逻辑回归算法训练模型时,为模型引入多项式项,使模型生成不规则的决策边界,对非线性的数据进行分类: 问题:引入多项式项后,模型变的复杂,可能产生过拟合现象: 方案:对模型正则化处理,损失函数添加正则项(αL2),生成新的损失函数,并对新的损失函数进行优化: 优化新的损失函数: 满足了让原来的损失函数尽量的小: 另一方面,对于 L2 正则项(包含参数 θ 值),限制 θ 的大小: 引入了参数 α ,调节新的损失函数中两部分(原损失函数和 L2 正则项)的重要程度:当然也可以引入 α…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 逻辑回归 一.为什么使用logistic回归   一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大. Why?  为什么回归一般不用在分类上?其实,很多初学者都会提出这个问题.然而,文字的解释往往不能说服我们,接下来 用图示的方式为大家讲解. 以最简单的分类为例,当y≥0.5时,输出“1”:当y<0.5时,输出“0”.下面左图,数据样本较好,线性回归模型在y=0.5处的橘色分界线 刚好在“0”.…
逻辑回归avik-jain介绍的不是特别详细,下面再唠叨一遍这个算法. 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑回归对于这样的问题会更加合适. 逻辑回归假设函数如下,它对θ…
# -*- coding: utf-8 -*- """ Created on Wed Apr 22 17:39:19 2015 @author: 90Zeng """ import numpy import theano import theano.tensor as T import matplotlib.pyplot as plt rng = numpy.random N = 400 # 400个样本 feats = 784 # 每个样本的维…
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X…
作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCostFunction 计算代价和梯度.实现 OneVsAll 使用 fmincg 函数进行训练.使用 OneVsAll 里训练好的 theta 对 X 的数据类型进行预测,得到平均准确率. (2)多分类神经网络:两层 theta 权重值在 ex3weights 里已提供.参数不需要调,只需要在 pr…
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现KNN 100天搞定机器学习|Day13-14 SVM的实现 100天搞定机器学习|Day15 朴素贝叶斯 Day17,Avik-J…
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们都知道可以用回归模型来进行回归任务,但如果要利用回归模型来进行分类该怎么办呢?本文介绍的逻辑回归就基于广义线性模型(generalized linear model),下面我们简单介绍一下广义线性模型: 我们都知道普通线性回归模型的形式: 如果等号右边的输出值与左边y经过某个函数变换后得到的值比较贴…
根据Andrew Ng在斯坦福的<机器学习>视频做笔记,已经通过李航<统计学习方法>获得的知识不赘述,仅列出提纲. 1 初识机器学习 1.1 监督学习(x,y) 分类(输出y是离散值) 回归(输入输出是连续值) e.g.垃圾邮件.乳腺癌肿瘤好坏.是否患有糖尿病 1.2 无监督学习(x) e.g. 新闻事件分类(谷歌新闻).细分市场 2 单变量线性回归 2.1 模型描述 一种可能的表达方式为:\(h_\theta \left( x \right)=\theta_{0} + \thet…
逻辑回归 1.  总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2.  基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内在分布规律.单个样本表示成二维或多维向量,包含一个因变量Y和一个或多个自变量X.回归分析主要研究当自变量变化时,因变量如何变化,数学表示成Y=f(X),其中函数f称为回归函数(regression function).回归分析最终目的是找到最能代表已观测数据的回归函数. 分类:因变量Y为有限离散集,…
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二分类数据集,212个正样本,357个负样本. 首先,加载数据,并划分训练集和测试集: # 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共有两类 cancer = skd.load_breast_cancer() # 将数据集的数据和标签分离 X_data = cancer.data Y…
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(logistic regression)虽然叫回归,但他做的事实际上是分类.这里我们讨论二元分类,即只分两类,y属于{0,1}. 选择如下的假设函数: 这里写图片描述 其中: 这里写图片描述 上式称为逻辑函数或S型函数,图像如下图: 这里写图片描述 可以看到,当z趋向正无穷,g(z)趋向1,当z趋向负无穷g(z)趋…
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足,均值为0的高斯分布,即正态分布.这个假设是靠谱的,符合一般客观统计规律.若使 模型与测量数据最接近,那么其概率积就最大.概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计.对最大似然函数估计进行推导,就得出了推导后结果: 平方和最小公式 注: 1.x的平方等于x的转置乘以x. 2…