在学习数据分析时,NumPy作为最基础的数据分析库,我们能够熟练的掌握它是学习数据分析的必要条件.接下来就让我们学习该库吧. 学习NumPy库的环境: python:3.6.6 编辑器:pycharm NumPy安装:在cmd命令下,直接使用pip语句,pip install NumPy即可! NumPy是使用Python进行科学计算的基本软件包.它主要包含一下内容: 有一个强大的N维数组对象ndarray; 拥有复杂的广播功能函数: 整合C/C++和Fortran代码的工具: 线性代数.傅里叶…
本章主要介绍的是ndarray数组的操作和运算! 一. ndarray数组的操作: 操作是指对数组的索引和切片.索引是指获取数组中特定位置元素的过程:切片是指获取数组中元素子集的过程. 1.一维数组的索引和切片与python的列表类似: 索引: import numpy as np a = np.array([9, 8, 7, 6, 5]) print(a[2]) 7 切片:起始编号:终止编号:(不含):步长 三元素用冒号分割 import numpy as np a = np.array([9…
ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.array([2,2]) 创建了一个长度为2的一维数组 array(data,dtype=):该函数可以传递两个参数,第一个为数据,可以接收嵌套的元组或列表(可以组合):第二个为数据类型,如果不传会为ndarray()对象指定最合适的数据类型. 二.基本属性: dtype(data-type,数据类型):指…
numpy是一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于在大型.多维数组上执行数值运算 numpy创建数组(矩阵): numpy中的数据类型: 数据类型的操作: 练习代码: import random import numpy as np # 使用numpy生成数组,得到ndarray类型 t1 = np.array([1, 2, 3]) print(t1) print(type(t1)) t2 = np.array(range(10))…
数组作为对象是允许使用new关键字进行内存分配的,在使用数组前,必须首先定义数组的变量所属的类型.一维数组的创建有两种方法: 1,先声明,再用new运算符进行内存分配 数组元素类型+数组名字[] 数组元素类型[]+数组名字 数组名字=new数组元素类型[数组元素个数] 2,声明的同时为数组分配内存. 将数组的声明和内存的分配合在一起. 数组元素类型[]+数组名字=new数组元素类型[数组元素个数] 数组的初始化: 数组可以与基本数据类型一样进行初始化操作,数组的初始化可分别初识化数组中的每个元素…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) fo…
目录 (一)ndarray数组的创建 1.从列表以元组中创建: 2.使用函数创建: (二)ndarray数组的变换 1.维度的变换: 2.类型的变换: 目录: 1.ndarray数组的创建 2.ndarray数组的变换 (一)ndarray数组的创建 1.从列表以元组中创建: .array(list/tuple) .array(list/tuple,dytpe = np.int32), dtype用于指名类型 2.使用函数创建: (1).arange(n), 0~n-1 一维 (2).ones(…
ndarray数组的创建方法 1.从python中的列表,元组等类型创建ndarray数组 x = np.array(list/tuple) x = np.array(list/tuple,dtype=np.float32)   当np.array() 不指定dtype时,Numpy 将根据数据情况关联一个dtype类型   2.使用Numpy中函数创建ndarray数组,如:arange,ones,zeros 等 np.arange(n) 类似range90函数,返回ndarray类型,元素从…
1. 初识数组 import numpy as np a = np.arange(15) a = a.reshape(3, 5) print(a.ndim, a.shape, a.dtype, a.size, a.itemsize) # 2 (3, 5) int64 15 8 ndim,数组的维度数,二维数组就是 2 shape,数组在各个维度上的长度,用元组表示 dtype,数组中元素的数据类型,比如 int32, float64 等 size,数组中所有元素的总数 itemsize,数组中每…
concatenate功能:数组拼接 函数定义:numpy.concatenate((a1, a2, ...), axis=0, out=None)…