第一部分-电影网站: 软件架构: SpringBoot+Mybatis+JSP 项目描述:主要实现电影网站的展现 和 用户的所有动作的地方 技术选型: 技术 名称 官网 Spring Boot 容器 https://projects.spring.io/spring-boot/ Spring MVC MVC框架 http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc MyBatis…
写在前面 一直不知道这个专栏该如何开始写,思来想去,还是暂时把自己对这个项目的一些想法 和大家分享 的形式来展现.有什么问题,欢迎大家一起留言讨论. 这个项目的源代码是在https://github.com/LuckyZXL2016/Movie_Recommend这个位置. 基于源代码做了一些简单的调整. 关于这个系列的 所有文章,有新的想法,我也会及时做更新 项目效果 类似于国内豆瓣网站,能够在该项目-电影网站-进行电影信息浏览和查询,并且-电影网站-会根据用户的 浏览记录和用户评论,点赞(好…
第四部分-推荐系统-数据ETL 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去 前置准备: spark +hive vim $SPARK_HOME/conf/hive-site.xml <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <pr…
第四部分-推荐系统-模型训练 本模块基于第3节 数据加工得到的训练集和测试集数据 做模型训练,最后得到一系列的模型,进而做 预测. 训练多个模型,取其中最好,即取RMSE(均方根误差)值最小的模型 说明几点 1.ALS 算法不需要自己实现,Spark MLlib 已经实现好了,可以自己 跟源码学习 花时间钻研,动手写,写代码 翻译论文 写博客 多下功夫 最新http://spark.apache.org/docs/latest/ml-guide.html spark1.6.3 spark.mll…
基于Spark的电影推荐系统(推荐系统~7) 22/100 发布文章 liuge36 第四部分-推荐系统-实时推荐 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影. 说明几点 1.数据来源是 testData 测试集的数据.这里面的用户,可能存在于训练集中,也可能是新用户.因此,这里要做处理. SparkStreaming + kakfa ## 开始Coding 步骤一:在streaming 包下,新建PopularMovies2 package com.csy…
第四部分-推荐系统-项目介绍 行业背景: 快速:Apache Spark以内存计算为核心 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算 完整的生态圈 只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速 "猜你喜欢"为代表的推荐系统,从吃穿住行等 项目背景介绍: 本项目是一个基于Apache Spark 的电影推荐系统, 技术路线:离线推荐+实时推荐 项目架构: 存储层:HDFS作为底层存储,Hive作为数据仓库 (Hive Metas…
数据文件: u.data(userid  itemid  rating  timestamp) u.item(主要使用 movieid movietitle) 数据操作 把u.data导入RDD, take()  x.split(‘\t’)(1) 查看userid字段的统计信息 查看udata数据矩阵的 userid列上所有值的统计信息 使用ALS.train进行训练 import org.apache.spark.mllib.recommendation.ALS import org.apac…
基于Mahout的电影推荐系统 1.Mahout 简介 Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序.经典算法包括聚类.分类.协同过滤.进化编程等等,并且,在 Mahout 的最近版本中还加入了对 Apache Hadoop 的支持,使这些算法可以更高效的运行在云计算环境中. 2.Taste简介 Taste 是 Apache Mahou…
本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movielens的推荐系统,我这里用pytorch0.4做了个移植. 本文实现的模型Github仓库:https://github.com/Holy-Shine/movie_recommend_system 1. 总体框架 先来看下整个文件包下面的文件构成: 其中: Params: 保存模型的参数文件以及模…
九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. 1.找出各个电影的评分人总数 2.对于每个电影对A和B,找出所有同时对A和B评分的人. 3.找出每两个相关电影之间的关联.在这个阶段,我使用3个不同的关联度算法(pearson,cosine,jaccard)一般要根据具体的数据需求来选择关联度算法. 数据的输入格式: 第一阶段转化完之后: 经过M…
R语言实战实现基于用户的简单的推荐系统(数量较少) a<-c(1,1,1,1,2,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,7,7) b<-c(1,2,3,4,2,3,4,5,4,1,2,3,2,4,5,2,6,4,1,2,3,4) da<-data.frame(a,b) a<-c(1,1,2,2,3,3,3,3,3,4,4,5,5,5,6,6,7,7) b<-c(2,5,7,2,6,4,7,1,8,6,3,3,4,1,2,4,4,9) da2<-da…
基于Spark ALS构建商品推荐引擎   一般来讲,推荐引擎试图对用户与某类物品之间的联系建模,其想法是预测人们可能喜好的物品并通过探索物品之间的联系来辅助这个过程,让用户能更快速.更准确的获得所需要的信息,提升用户的体验.参与度以及物品对用户的吸引力. 在开始之前,先了解一下推荐模型的分类: 1.基于内容的过滤:利用物品的内容或是属性信息以及某些相似度定义,求出与该物品类似的物品 2.协同过滤:利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度 3.矩阵分解(包括显示矩阵分解.隐式…
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop/Yarn平台,但目前对大数据的实时分析工具,业界公认最佳为Spark.Spark是基于内存计算的大数据并行计算框架,Spark目前是Apache软件基金会旗下,顶级的开源项目,Spark提出的DAG作为MapReduce的替代方案,兼容HDFS.H…
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成…
[基于spark IM 的二次开发笔记]第一天 各种配置 http://juforg.iteye.com/blog/1870487 http://www.igniterealtime.org/downloads/source.jsp…
基于Spark和SparkSQL的NetFlow流量的初步分析--scala语言 标签: NetFlow Spark SparkSQL 本文主要是介绍如何使用Spark做一些简单的NetFlow数据的处理,是基于 IntelliJ IDEA开发Spark 的Maven项目,本文会介绍一些简单的NetFlow基础知识,以及如何在 IntelliJ IDEA 上开发Maven项目,用Scala 写的一些简单的NetFlow字段分析统计的代码,包括 SparkCore和SparkSQL两个版本的. 初…
  UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import java.util.Map; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.jav…
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.HashSet; import java.util.Iterator; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
转载自:https://blog.csdn.net/sunbow0/article/details/50848719 1.基于Spark自动扩展scikit-learn(spark-sklearn)1.1 导论Spark MLlib 将传统的单机机器学习算法改造成分布式机器学习算法,比如在梯度下降算法中,单机做法是计算所有样本的梯度值,单机算法是以全体样本为计算单位:而分布式算法的逻辑是以每个样本为单位,在集群上分布式的计算每个样本的梯度值,然后再对每个样本的梯度进行聚合操作等.在Spark M…
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站的新闻自动分类,垃圾邮件检测,非法信息过滤等.本文将通过训练一个手机短信样本数据集来实现新数据样本的分类,进而检测其是否为垃圾消息,基本步骤是:首先将文本句子转化成单词数组,进而使用 Word2Vec 工具将单词数组转化成一个 K 维向量,最后通过训练 K 维向量样本数据得到一个前馈神经网络模型,以…
目录 基于Spark的GBDT + LR模型实现 数据预处理部分 GBDT模型部分(省略调参部分) GBDT与LR混合部分 基于Spark的GBDT + LR模型实现 测试数据来源http://archive.ics.uci.edu/ml/machine-learning-databases/adult/ 该模型利用Spark mllib的GradientBoostedTrees作为GBDT部分,因为ml模块的GBTClassifier对所生成的模型做了相当严密的封装,导致难以获取某些类或方法.…
StreamDM:基于Spark Streaming.支持在线学习的流式分析算法引擎 streamDM:Data Mining for Spark Streaming,华为诺亚方舟实验室开源了业界第一个基于 Spark Streaming 的算法引擎StreamDM. 大数据分析按照模型是否在线学习可以分为: 离线学习(Offline Learning): 在线学习(Online Learning)两大方式, 对应的数据处理模式分别为: 批处理(Batch Mode)分析: 流处理(Stream…
注:本章不涉及spark和scala原理的探讨,详情见其他随笔 一.分布式估算圆周率 计算原理:假设正方形的面积S等于x²,而正方形的内切圆的面积C等于Pi×(x/2)²,因此圆面积与正方形面积之比C/S就为Pi/4,于是就有Pi=4×C/S.可以利用计算机随机产生大量位于正方形内部的点,通过点的数量去近似表示面积.假设位于正方形中点的数量为Ps,落在圆内的点的数量为Pc,则随机点的数量趋近于无穷时,4×Pc/Ps将逼近于Pi. idea实现代码: package com.hadoop impo…
代码放在github上:click me 一.数据说明 数据集为英文语料集,一共包含20种类别的邮件,除了类别soc.religion.christian的邮件数为997以外每个类别的邮件数都是1000.每份邮件内部包含发送者,接受者,正文等信息. 二.实验方法 2.1 数据预处理 数据预处理阶段采用了几种方案进行测试 直接将邮件内容按空格分词 使用stanford corenlp进行分词,然后使用停词表过滤分词结果 使用stanford corenlp进行分词,并根据词性和停词表过滤分词结果…
31页PPT:基于Spark的移动大数据挖掘 数盟11.16 Data Science Meetup(DSM北京)分享:基于Spark的移动大数据挖掘分享嘉宾:张夏天(TalkingData首席数据科学家) @张夏天_机器学习 内容提要: TalkingData移动数据服务现状和挑战 为什么选择Spark TalkingData移动大数据挖掘 应用.系统和算法 Spark不是全部 以下为详细内容:…
京东基于Spark的风控系统架构实践和技术细节 时间 2016-06-02 09:36:32  炼数成金 原文  http://www.dataguru.cn/article-9419-1.html 主题 Spark软件架构 1.背景 互联网的迅速发展,为电子商务兴起提供了肥沃的土壤.2014年,中国电子商务市场交易规模达到13.4万亿元,同比增长31.4%.其中,B2B电子商务市场交易额达到10万亿元,同比增长21.9%.这一连串高速增长的数字背后,不法分子对互联网资产的觊觎,针对电商行业的恶…
在大数据处理和人工智能时代,数据工厂(Data Factory)无疑是一个非常重要的大数据处理平台.市面上也有成熟的相关产品,比如Azure Data Factory,不仅功能强大,而且依托微软的云计算平台Azure,为大数据处理提供了强大的计算能力,让大数据处理变得更为稳定高效.由于工作中我的项目也与大数据处理相关,于是我就在思考,是否自己也可以设计打造一个数据工厂,以便寻求一些技术痛点的解决方案,并且引入一些有趣的新功能. 因此,我利用业余时间,逐步打造了一个基于Spark的数据工厂,并取名…
作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai.tech/tutorials/63 本文地址:https://www.showmeai.tech/article-detail/296 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 背景 Sparkify 是一个音乐流媒体平台,用户可以获取部分免费音乐资源,也…
本文测试的Spark版本是1.3.1 本文将在Spark集群上搭建一个简单的小型的电影推荐系统,以为之后的完整项目做铺垫和知识积累 整个系统的工作流程描述如下: 1.某电影网站拥有可观的电影资源和用户数,通过各个用户对各个电影的评分,汇总得到了海量的用户-电影-评分数据 2.我在一个电影网站上看了几部电影,并都为其做了评分操作(0-5分) 3.该电影网站的推荐系统根据我对那几部电影的评分,要预测出在该网站的电影资源库中,有哪些电影是适合我的,并推荐给我看 4.根据我的观影习惯和用户的一个个人信息…