HDU1370(中国剩余定理)】的更多相关文章

0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中r1,r2,--,rk互质 这种问题都有多解,每一个解都为最小的解加上若干个lcm(r1,r2,...,rk),这个不用我证了吧(-_-||) 解决这个问题的方法是构造法, 先构造k个数 满足, 这样就保证 ,但是由于 bi 乘了除 ri 以外所有 r,所以bi模其它的 r 都为 0, 再把所有 b…
裸题,没什么好说的 第一个中国剩余定理 写暴力都过了..可见这题有多水 代码: #include<iostream> #include<stdio.h> #include<math.h> #include<string> #include<map> #include<algorithm> using namespace std; #define MAX 200000000 #define ull unsigned long long…
昨天我细致一想,发现自己之前的分类(用OJ来划分,毫无意义啊.)太失败了,所以我又一次划分了一下大分类,在分到数论的时候,我就想起了中国剩余定理了.于是乎今天就刷了一题中国剩余定理的题目了.话说太久没作数学题.导致我连例子都调了好多次(在算逆元时候老是算错-烦恼!),好在提交时候是1A. 题目的意思就是:人有三个周期,记为p,e,i,周期天数分别为23,28,33,如今给定你三个时间a,b,c,和一个天数d,a,b,c分别表示p,e,i出现的天数,问下一次出现的大于d的天数是今年的第几天,即输出…
孙子定理: 当前存在三个式子,t%3=2,t%5=3,t%7=2.然后让你求出t的值的一个通解. 具体过程:选取3和5的一个公倍数t1能够使得这个公倍数t1%7==1,然后选取3和7的一个公倍数t2使得这个公倍数t2%5==1,然后再选取5和7的一个公倍数t3使得这个公倍数t3%3==1,求出来 t1==15,t2==21,t3==70,然后最终的答案就是(15*3+21*3+70*2)+105*n.这里的105指的是3 5 7 的最小公倍数,为什么这样做?既然是有余数,那么就把这个余数搞没了就…
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. 现在有方程组:中国剩余定理指出: 扩展中国剩余定理 在一般情况下,要求任两个数互质这个条件太苛刻了,CRT派不上用场,我们需要一个更具普遍性的结论,这就是EX-CRT.虽然是称为EX-CRT,但这个定…
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<cmath> using namespace std; #define MAXN 20 typedef long long LL; int n; int s[MAXN]; LL a[MAXN], m[MAXN]; //a是余数,m是除数 LL ex…
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \times {p_n}$)的余数也确定了,反之亦然. 用表达式表示如下: \[\begin{array}{l}x \equiv {a_1}(\bmod {p_1})\\{\rm{     }} \vdots \\x \equiv {a_n}(\bmod {p_n})\end{array}\] 那么任何满足…
题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687 题意: 中文题诶~ 思路: 本题就是个中国剩余定理模板题,不过模拟也可以过,而且时间复杂度嘛~ 我们可以知道gcd得出两个数的最大公约在最坏的情况下(a, b是相邻的两个斐波拉契数)是O(logn)的, 同理可以知道exgcd也是O(lgn)时间复杂度,因此中国剩余定理时间复杂度是O(nlogn); 而模拟的话最坏的情况下需要O(n*x)的时间~本题两种算法都是15ms.…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2389    Accepted Submission(s): 885 Problem Description On the way to the next secret treasure hiding place, the mathematician…
/* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而且被d1除,余数为1:(称为R1相对于d1的数论倒数) R1 . R2 . … . Rn是d1.d2.….dn-1的公倍数,而且被dn除,余数为1: D是d1.d2.….的最小公倍数: R是任意整数(代表倍数),可根据实际需要决定: 且d1..….必须互质,以保证每个Ri(i=1,2,…,n)都能求…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 110991   Accepted: 34541 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程就想到中国剩余定理,然后看下确定的方程情况. 由乘法原理,共有II ki 种情况,即求解II ki 次.k比较大时基本完蛋. 其实解模方程还有一种暴力方法,就是选定一个模方程,令t=0,1...., n=t*LCM+余数(n一定要大于0) 通过t不断增大这种迭代方式从小到大创造一些可能解n,然后去测…
一,题意:右上角中文.二,思路: 1,由题意得出方程组 2,利用中国剩余定理求解 3,求出最小正整数三,步骤: 1,由题意得出方程组 (n+d) % 23 = p ; (n+d) % 28 = e ; (n+d) % 33 = i ; 2,中国剩余定理求解 i,从23和28的公倍数中找出x,且满足x%33 = 1 ,x=1288 ii,从23和33的公倍数中找出y,且满足y%28 = 1 ,y=14421 iii,从28和33的公倍数中找出z,且满足z%23 = 1 ,z=5544 iiii,s…
B - Biorhythms Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1006 Description 人生来就有三个生理周期,分别为体力.感情和智力周期,它们的周期长度为23天.28天和33天.每一个周期中有一天是高峰.在高峰这天,人会在相应的方面表现出色.例如,智力周期的高峰,人会思维敏捷,精力容易高度集中.因为三个周期的周长…
在POJ上有译文(原文右上角),选择语言:简体中文 求解同余方程组:x=ai(mod mi) i=1~r, m1,m2,...,mr互质利用中国剩余定理令M=m1*m2*...*mr,Mi=M/mi因为mi两两互质,所以(Mi,mi)=1令Mi*yi=1(mod mi)的解为yi,即Mi模mi的逆元则方程的解为:(a1*M1*y1+a2*M2*y2+...+ar*Mr*yr)%M 方法一:用扩展欧几里德求逆元 #include <iostream> #include <stdio.h&g…
如果直接枚举的话,枚举量为k1 * k2 *...* kc 根据枚举量的不同,有两种解法. 枚举量不是太大的话,比如不超过1e4,可以枚举每个集合中的余数Yi,然后用中国剩余定理求解.解的个数不够S个的时候,要把这些解分别加上M.2M...(M = X1 * X2 *...* Xc) 如果上述枚举量太大的话,直接枚举x.找一个k/X最小的条件,然后让x = t * X + Yi开始枚举,因为这样枚举x增长得最快,所以枚举次数也就最少.如果符合要求的话则输出. 上面两种方法都要注意所找到的解为正整…
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的数的个数,可以看成若干个同余方程联立成的一次同余方程组.然后我们就可以很自然而然的想到了中国剩余定理.需要注意的是,在处理中国剩余定理的过程中,可能会发生超出LongLong的情况,需要写个类似于快速幂的快速乘法来处理. 吐槽:赛场上不会快速乘,导致疯狂WA,唉,还是太年轻 代码: #include…
Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body an…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显的中国剩余定理+容斥,容斥的时候每次要加上个(%7=0)这一组. 中间会爆longlong,所以在其中加上个快速乘法(类似快速幂).因为普通的a*b是直接a个b相加,很可能会爆.但是你可以将b拆分为二进制来加a,这样又快又可以防爆. //#pragma comment(linker, "/STACK…
题意就不说了. 分析:折腾好几天自己写的代码还是看了别人代码后发现几乎没什么复杂度的差别,可是就是一直超时,后来干脆照着别人写啊,一直WA,就在准备放弃干脆先写这篇博客的时候,又看了一眼WA的代码,发现一个中间变量没有取模直接爆掉了.终于AC了,做了好几天. 思路:对所有单词建立AC自动机,那么每个节点j转移到下一个节点k有方程:dp[i+1][k] =sum{dp[i][j]*Get},表示第i+1步位于k节点,并且由j节点转移过来,其中 Get =  ∏prime[i]*(len[i]+j)…
题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #include<iostream> #include<cstdio> using namespace std; void gcd(int a,int b,int &d,int &x,int &y) { if(!b) { d=a,x=,y=; } else { gcd…
题目地址:POJ 1006 学习了下中国剩余定理.參考的该博客.博客戳这里. 中国剩余定理的求解方法: 假如说x%c1=m1,x%c2=m2,x%c3=m3.那么能够设三个数R1,R2,R3.R1为c2,c3的公倍数且余c1为1,同理.R2,R3也是如此.然后设z=R1*m1+R2*m2+R3*m3,那么z就是当中一个解.并且每隔(c1,c2,c3)的最小公倍数就是一个解.想要最小解的话,仅仅需对最小公倍数取余即可了. 以下的代码未删改.比赛的时候为了避免超时,R1,R2,R3的求解过程全然没有…
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 m 减去 Ai - 1 ,相当于将这一部分固定分给 xi,就转化为无限制的情况了. 如果有一些限制条件是 xi <= Ai 呢?直接来求就不行了,但是注意到这样的限制不超过 8 个,我们可以使用容斥原理来求. 考虑容斥:考虑哪些限制条件被违反了,也就是说,有哪些限制为 xi <= Ai 却是 xi…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数的个数. 题目思路: [中国剩余定理][容斥原理][快速乘法][数论] 因为都是素数所以两两互素,满足中国剩余定理的条件. 把7加到素数中,a=0,这样就变成解n+1个同余方程的通解(最小解).之后算L~R中有多少解. 但是由于中国剩余定理的条件是同时成立的,而题目是或的关系,所以要用容斥原理叠加删…
题目链接: http://poj.org/problem?id=1006 http://acm.hdu.edu.cn/showproblem.php?pid=1370 题目大意: (X+d)%23=a1,(X+d)%28=a2,(X+d)%33=a3,给定a1,a2,a3,d,求最小的X. 题目思路: [中国剩余定理] 23,28,33互素,可以套中国剩余定理. 也可以直接手算逆元. 33×28×a模23的逆元为8,则33×28×8=5544: 23×33×b模28的逆元为19,则23×33×1…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 127339   Accepted: 40342 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud C Code Feat   The government hackers at CTU (Counter-Terrorist Unit) have learned some things about the code, but they still haven't quite solved it.They know it's a single, strictly positive…
题目链接 求C(n, m)%p的值, n, m<=1e18, p = p1*p2*...pk. pi是质数. 先求出C(n, m)%pi的值, 然后这就是一个同余的式子. 用中国剩余定理求解. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; #define l…
中国剩余定理 x = ai (mod mi)  ai和mi是一组数,mi两两互质,求x 令Mi = m1*m2*~mk     其中,mi不包含在内. 因为mi两两互质,所以存在x和y, st   Mi*xi + mi*yi = 1 令ei = Mi*xi ,则有: 则e0a0 + e1a1 + e2a2+ - +en-1*an-1是方程一个解 因为n%3=2,n%5=3,n%7=2且3,5,7互质       使5×7被3除余1,用35×2=70:        使3×7被5除余1,用21×1…
F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers.…