R语言预测实战(游浩麟)笔记1】的更多相关文章

预测流程 确定主题.指标.主体.精度.周期.用户.成本和数据七要素. 收集数据.内容划分.收集原则. 选择方法.主要方法有自相关分析.偏相关分析.频谱分析.趋势分析.聚类分析.关联分析.相关分析.互相关分析.典型相关分析.对应分析等. 分析规律.常见的规律有趋势性.周期性.波动性.相关性.相似性.项关联性.段关联性. 建立模型.特征构建.特征选择.算法选择(可理解性.性能.数据要求).构建模型(分割数据集).测试模型.模型优化.评估效果.发布模型. 分析方法 自相关分析,同一时间序列在不同时刻的…
特征构建技术 特征变换,对原始的某个特征通过一定的规则或映射得到新特征的方法,主要方法包括概念分层.标准化.离散化.函数变换以及深入表达.特征变换主要由人工完成,属于比较基础的特征构建方法. 概念分层,缩减离散数据的方法,比如分段. 标准化,即无量纲处理.有线性标准化(极差标准化.z-score标准化[正态分布].小数定标标准化).非线性标准化(对数标准化.小数标准化[可能还会有什么指数标准化?]) 离散化(分箱法[按某规则存放在不同的箱中,课以按数量和区间分],熵离散法[没搞懂]),规则离散法…
2.1预测流程 从确定预测主题开始,一次进行数据收集.选择方法.分析规律.建立模型.评估效果直到发布模型. 2.2.1确定主题 (1)指标:表达的是数量特征,预测的结果也通常是通过指标的取值来体现. (2)主体:预测研究的对象. (3)精度:预测能够达到的准确水平. (4)周期:在预测工作开始前,需要明确预测结果的时间跨度,或叫做周期. (5)用户: (6)成本: (7)数据: 2.1.2收集数据 内容划分 收集原则 :全面覆盖.质量良好.周期一致.粒度(粒度可以理解为事物的层次)对称.持续生产…
本例使用forecast包中自带的数据集wineind,它表示从1980年1月到1994年8月, 由葡萄酒生产商销售的容量不到1升的澳大利亚酒的总量.数据示意如下: #观察曲线簇 len=1993-1980+1 data0=wineind[1:12*len] range0=range(data0)+c(-100,100) plot(1:12,1:12,ylim=range0,col='white',xlab="月份",ylab="销量") for(i in 1:le…
使用R语言预测产品销量 通过不同的广告投入,预测产品的销量.因为响应变量销量是一个连续的值,所以这个问题是一个回归问题.数据集共有200个观测值,每一组观测值对应一种市场情况. 数据特征 TV:对于一个给定市场的单一产品,用于电视上的广告费用(以千为单位) Radio:用于广告媒体上投资的广告费用 Newspaper:用于报纸媒体上的广告费用 响应 Sales:对应产品的销量 加载数据 > data <- read.csv("http://www-bcf.usc.edu/~garet…
dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口:tidyr包的作者是Hadley Wickham, 该包用于"tidy"你的数据,这个包常跟dplyr结合使用. 本文将介绍dplyr包的下述五个函数用法: 筛选: filter() 排列: arrange() 选择: select() 变形: mutate() 汇总: summarise() 分组: group_by(…
摘要:R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言. 最近遇到很多的程序员都想转行到数据分析,于是就开始学习R语言.总以为有了其他语言的编程背景,学习R语言就是一件很简单的事情,一味地追求速度,但不求甚解,有些同学说2周就能掌握R语言,但掌握的仅仅是R语言的语法,其实这只能算是入门. R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读…
本人最近在某咨询公司实习,涉及到了一些数据分析的工作,用的是R语言来处理数据.但是在应用的过程中,发现用R很不熟练,所以再打算学一遍R.曾经花一个月的时间看过一遍<R语言编程艺术>,还用R做过阿里的推荐算法比赛,对R语言有一些最初级.基本的了解.不过 ,上面那本书虽然挺好,但是不适合速成,是从程序员的角度写的,对常用函数和统计知识涉及的不多.在实际工作中,发现适时应用R的包和函数是十分重要的,所以打算另找一本书来看.在学校放着一本<R语言实战>,无奈没拿过来,就用电子版的学一遍吧.…
R 语言实战(第二版) part 4 高级方法 -------------第13章 广义线性模型------------------ #前面分析了线性模型中的回归和方差分析,前提都是假设因变量服从正态分布 #广义线性模型对非正态因变量的分析进行扩展:如类别型变量.计数型变量(非负有限值) #glm函数,对于类别型因变量用logistic回归,计数型因变量用泊松回归 #模型参数估计的推导依据的是最大似然估计(最大可能性估计),而非最小二乘法 #1.logistic回归 library(AER) d…
R 语言实战(第二版) part 3 中级方法 -------------第8章 回归------------------ #概念:用一个或多个自变量(预测变量)来预测因变量(响应变量)的方法 #最常用:OLS--普通最小二乘回归法,包括简单线性回归.多项式回归.多元线性回归 #过程:拟合OLS回归模型-->评价拟合优度-->假设检验-->选择模型 #OLS回归 #目标:减少因变量的真实值和预测值的差值来获得模型参数(截距和斜率),即使得残差平方和最小 #数据需满足:正态性.独立性.线性…