BSGS算法总结】的更多相关文章

BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct node{ static const int mo=100007; int a[100010],v…
BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (mod p) 则 y^(j)≡z∗ine(y^(i*m)) (mod p)(逆元) 由费马小定理y^(p-1)≡1 (mod p) 得 ine(y^m) = y^(p-m-1)  ine(y^(i*m)≡ine(y^((i−1)m))∗y^(p-m-1) 1.首先枚举同余符号左面,用一个hash保存(…
学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只不过改成n<=10^30000000,并对给定p取模,0<p<2^31.一样很水嘛大家说对不对. 下面来简单介绍一下BSGS算法,BSGS(Baby steps and giant steps),又称包身工树大步小步法,听上去非常高端,其实就是一个暴力搜索.比如我们有一个方程,a^x≡b (…
BSGS算法 我是看着\(ppl\)的博客学的,您可以先访问\(ppl\)的博客 Part1 BSGS算法 求解关于\(x\)的方程 \[y^x=z(mod\ p)\] 其中\((y,p)=1\) 做法并不难,我们把\(x\)写成一个\(am-b\)的形式 那么,原式变成了 \(y^{am}=zy^b(mod\ p)\) 我们求出所有\(b\)可能的取值(0~m-1),并且计算右边的值 同时用哈希或者\(map\)之类的东西存起来,方便查询 对于左边,我们可以枚举所有可能的\(a\),然后直接查…
BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y,z,p>=1\)求解\(x\) 普通的\(BSGS\)只能用来解决\(gcd(y,p)=1\)的情况 设\(x=a*m+b, m=\lceil \sqrt p \rceil, a\in[0,m), b\in[0,m)\) 那么\(y^{a*m}=z*y^{-b} (mod\ p)\) 怎么求解,为…
其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方案%100000007的结果是R,现在给出R,N,K,请求出最小的M 对于第一行来说,每个位置有k种选择,那么填色方案数是k^n 对于第二行来说,每个位置有k-1中选择,那么填色方案数时(k-1)^n种 依次类推,如果i+1行的某个格子上面是白格,那么这个格子有k种填色方案 将M行分为两部分,第一部…
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以用\(bsgs\)在\(O(\sqrt n)\) 的复杂度内求出关于\(x\)的最小正整数解.(前提是\(p\)为质数) \(a^x\equiv b \mod p\) 我们可以知道如果我们的模数p是一个质数,我们将同余式的右边以逆元的形式乘到左边来,根据殴拉定理(因为p是质数,所以a,p互质)则我们…
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散对数,记为$x = ind_{a}b$. 假如给定$a, b, m$,考虑如何求$x$,或者输出无解,先考虑$(a, m) = 1$的情况. 定理1(欧拉定理) 若$(a, m) = 1$,则$a^{\varphi(m)}\equiv 1 \pmod{m}$. 证明这里就不给出,因为在百度上随便搜一…
例题  poj 2417bsgs  http://poj.org/problem?id=2417 这是一道bsgs题目,用bsgs算法,又称大小步(baby step giant step)算法,或者拔(b)山(s)盖(g)世(s)算法,或者北(b)上(s)广(g)深(s)算法... 题目大意就是 给定a,b,p,求最小的非负整数x,满足  ax ≡ b(mod p) 先令 x = i*m-j,其中 m=ceil(sqrt(p)),ceil是向上取整. 这样原式就变为     ai*m-j =…
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条件是\((y,p)=1\). 我们选定一个大步长\(m=\sqrt p + 1\),设\(x=am+b\),那么显然有\(a,b\in[0,m)\).这样就有\(y^{am+b}\equiv z\ (mod\ p)\),就有\((y^m)^a=z*y^{-b}\ (mod\ p)\). 但是这个逆元…
POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accepted: 2211 Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarith…
题目: 给出A,B,C 求最小的x使得Ax=B  (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首先B的种类数不超过C种,结合鸽巢原理,所以Ax具有的周期性显然不超过C 所以一般的枚举算法可以O(C)解决这个问题 但是可以考虑把长度为C的区间分为k块,每块长度为b 显然x满足x=bi-p的形式(1<=i<=k,0<=p<b),所以Ax=B  (mod C)移项之后得到Abi=Ap*…
前言 \(BSGS\)算法,全称\(Baby\ Step\ Giant\ Step\),即大小步算法.某些奆佬也称其为拔(Ba)山(Shan)盖(Gai)世(Shi)算法. 它的主要作用是求解形式如\(x^t\equiv y(mod\ MOD)\)的式子中\(t\)的值\((gcd(x,MOD)=1)\). 而且,它是一个简单易懂的算法(毕竟连我这样的数学渣渣都能理解). 一个简单的性质 首先,我们需要知道一个简单的性质. 由费马小定理可得,\(x^{MOD-1}\equiv1(mod\ MOD…
BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. 由于费马小定理 \(x^{p-1} \equiv 1 \pmod p\) 当 \(p\) 为质数,则要是暴力的话只需要枚举到 \(p-1\) 即可. 假设 \(x=it-j\),其中 \(t= \lceil \sqrt p \rceil,j \in [0,t]\),方程变为 \(a^{it-j}…
https://www.zybuluo.com/ysner/note/1299836 定义 一种用来求解高次同余方程的算法. 一般问题形式:求使得\(y^x\equiv z(mod\ p)\)的最小非负\(x\). \(BSGS\)算法 要求\(p\)是质数. 由费马小定理可知,\(y^{p-1}\equiv1(mod\ p)\),所以暴力枚举只要枚举到\(p−1\)即可. 但是由于\(p\)一般都很大,所以一般都跑不动... 优化算法\(ing...\) 现在令\(x=mi−j\)(其中\(m…
$BSGS$ 算法 $Baby\ Steps\ Giant\ Steps$. 致力于解决给定两个互质的数 $a,\ p$ 求一个最小的非负整数 $x$ 使得 $a^x\equiv b(mod\ p)$ 其中 $b$ 为任意正整数,$2≤a<p$,$2≤b<p$ 该算法使用的原理与欧拉定理有关,其中$a,\ p$互质 $a^{\phi (p)}\equiv 1(mod\ p)$ 又因为 $a^0\equiv 1(mod\ p)$ 所以$0到\phi p$是一个循环节,也就是说该算法最多查找$\p…
BSGS算法 BSGS算法用于求解关于x的模方程\(A^x\equiv B\mod P\)(P为质数),相当于求模意义下的对数. 思想: 由费马小定理,\(A^{p-1}\equiv 1\mod P\),在p-1次方后开始循环,所以若原方程有解,\(x_{min}\in[0,P-1]\). 设\(x=i*m+j\),有\(A^{i*m+j}\equiv B\mod P\),移项得\({(A^m)}^i\equiv B*A^{-j}\mod P\),类似天天爱跑步,对于左右互不影响的等式可以开桶统…
https://www.luogu.com.cn/problem/P3846 BSGS这个东西是用来干啥的? 形如下面这个式子: \[a^b = c\;(mod\;p) \] 其中:p是一个质数.\(2\leq a,b<p\leq2^{31}-1\) 求一个最小的正整数b,使得式子成立 首先,我们要知道一个东西.这个式子是有循环节的 根据费马小定理:p是质数,且a不是p的倍数时 有:\(a^{p-1}\equiv1\;(mod\;p)\) 而:\(a^0=1\) 因此答案是落在\([0,p-2]…
前置芝士: 1.快速幂(用于求一个数的幂次方) 2.STL里的map(快速查找) 详解 BSGS 算法适用于解决高次同余方程 \(a^x\equiv b (mod p)\) 由费马小定理可得 x <= p-1 我们设 \(m = sqrt(p)\) 至于为什么写,下文会讲到. 那么\(x\)就可以用 \(m\) 表示出来. 即 x = \(k \times m - j\) 移项可得 \(a^t \equiv b\times a^j\) 其中 t = \(k \times m\) 这也就是我们为什…
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其实只要(\((a,p)=1\)即可) 首先考虑暴力怎么解:由费马小定理可知\(a^{p-1}\equiv 1(mod\ p)\),也就是说如果在\([0,p-1]\)内无解的话,方程就是无解的.所以我们从小到大枚举\([0,p-1]\)中的每一个数,满足方程就结束.但是这里\(p-1\)并不一定是最…
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解 先放几个同余定理: 一.判断如果B==1,那么x=0,算法结束 二.若gcd(A,P)不能整除 B,则 无解,算法结束 三.若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束. 有 四.持续步骤三,直至 gcd(A,)=1 有  五.枚举 0<x<k,若有解,输出x,算法结束 六.对于x>=k, A=,B=,P= A,P 互素 , 直接用BSGS 求    * A ^ x ≡ B mod…
大步小步算法用于解决:已知A, B, C,求X使得 A^x = B (mod C) 成立. 我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, m] 那么原式就变成了: A^(im) = A^j * B 我们先枚举j,把A^j * B加入哈希表 然后枚举i,在表中查照A^(i*m),如果找到了,那么就找到了一个解. 算法的复杂度为O(n^0.5) 代码: #include <bits/stdc++.h> #define ll long…
学习数学真是一件赛艇的事. BSGS名字听起来非常有意思,力拔山兮气盖世,北上广深,小步大步...算法其实更有意思,它是用来求解一个方程的 \(A^x≡B mod P\) 是不是特别眼熟,有几个式子长的特别像,先观察一下: 一:快速幂: 求\(A^B mod P\)的值 二:乘法逆元 \(A*x ≡ 1 (mod P)\) 或者 \(A*x ≡ B (mod P)\) 三:欧拉定理 \(A^{φ(P)}≡ 1 (mod P)\) (A,P互质) 四:费马小定理 \(A^{P-1} ≡ 1 (mo…
BSGS (大步小步算法) 已知\(a.b. c\),求\(x\).令\(a^x \equiv b \pmod c\). 步骤 \[m = \lceil \sqrtc\ \rceil \]\[x = i*m-j\ \ (i\in[1, m], j\in[0, m])\]\[a^{i*m-j} \equiv b \pmod c\]\[a^{i*m}\equiv b*a^j \pmod c\] 枚举\(a^j(j\in[0, m])\)放入\(hash\)表里面,再枚举\(a^{i*m}\),在\(…
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反而不是很有名……Giant Step就比较碉,是一个假面骑士片的插曲,由超碉的May'n和一个人建立的临时组合唱的,怕不怕) 这个主要是用来解决这个题: A^x=B(mod C)(C是质数),都是整数,已知A.B.C求x. 我在网上看了好多介绍,觉得他们写得都不够碉,我看不懂…于是我也来写一发. 先…
计算\(y^x ≡ z \ mod\ p\) 中 \(x\) 的解. 这个模板是最小化了\(x\) , 无解输出\(No \ Solution!\) map<ll,ll>data; ll m,res,t,ans; bool flag; Pow(int x,int y,int p){return (x^y)%p;} IL void BSGS(RG ll y , RG ll z,RG ll p){ y %=p; flag = false; if(!y && !z){puts(&qu…
求解 A^x ≡ B mod C  C是质数 的最小非负整数解 证明:A^x ≡ A^(x%φ(C)) mod C A^(x%φ(C))  ≡ A^(x-k*φ(C)) ≡ (A^x)/ A^(k*φ(C)) ≡ A^x mod C 所以枚举的话,x只需要枚举[0,φ(c)-1] 若x在[0,φ(C)-1]范围内有解,则同余方程有解,否则无解 令m=ceil(sqrt(m)),x=i*m-j A^(i*m-j) ≡ B mod C A^(i*m) ≡ B* A^j  mod C 将 B* A^j…
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef long long ll; ll Quick_Pow(ll a,ll p,ll MOD){ if(!p){…
题目: 给你A,B,K 求最小的x满足Ax=B (mod K) 题解: 如果A,C互质请参考上一篇博客 将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理. 我们将方程一直除去A,C的最大公约数进行变形,最终使得A和C互质. 将方程同除d1=gcd(A,C),得到B1=A/d1*Ax-1+C1y.有可能A和C1不互素,因此继续将方程同除d2=gcd(A,C1)得到B2=A2/d1d2*Ai-2+C2y.一直这样下去知道A和Ci互素.这里也能看出,若Bi不被gcd(A,Ci)整除则无解…
当你要求满足: $$ A^x \equiv B \ (\bmod \ P) $$ 的最小非负整数 x (gcd(A,P)==1)就可以用到 BSGS 了 设 $ m=\sqrt{P} $ 向上取整 处理一下那个式子: $$ A^{i \times m-j} \equiv B \ (\bmod \ P) $$$$ A^{i \times m} \equiv B \times A^j \ (\bmod \ P) $$ 枚举 j(0到m),将 B*A^j 存入hash表里面枚举 i(1到m),从has…