09 使用Tensorboard查看训练过程】的更多相关文章

打开Python Shell,执行以下代码: import tensorflow as tf import numpy as np #输入数据 x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0,0.05, x_data.shape) y_data = np.square(x_data)-0.5+noise #输入层 with tf.name_scope('input_layer'): #输入层.将这两…
TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面的内容,然而出现了一些问题,我的问题是在完成相应代码准备好可视化数据后无法启动tensorboard,如下是网上找的测试可视化的代码(至于如何准备可视化数据这里不做介绍,看参见:(英文)https://www.tensorflow.org/get_started/summaries_and_tens…
训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多,于是我们想要实时监测训练动态,并能根据训练情况及时对模型采取一定的措施.Keras中的回调函数和tf的TensorBoard就是为此而生. Keras回调函数 回调函数(callbacks)是在调用fit时传入模型的一个对象,它在训练过程中的不同时间点都会被模型调用.它可以访问关于模型状态和性能的所…
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
以下学习均由此:https://github.com/AITTSMD/MTCNN-Tensorflow 数据集 WIDER Face for face detection and Celeba for landmark detection WIDER Face 总共62个场景的文件夹,每个文件夹中多张图片 文件中保存的是每个图片中所有人脸框的位置,表示意义如下: Celeba 两个文件夹分别表示来源不同的图片.It contains 5,590 LFW images and 7,876 othe…
tensorboard是tensorflow自带的可视化工具 输入命令可以启动tensorboard服务. tensorboard --logdir=your log dir 通过浏览器localhost:6006进入可视化界面,可以看到能够进行可视化的选项,包括 SCALARS:显示训练过程中的损失值.准确率.权重偏置变化 IMAGES:显示训练的图像 AUDIO:显示训练的音频 GRAPHS:可视化模型 DISTRIBUTIONS:记录数据的分布 HISTOGRAMS:数据的直方图 EMBE…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 保存与读取模型 在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然…
一.前言 在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等.在Tensorflow中,最常使用的工具非Tensorboard莫属:在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom.visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好. 二.安装和启动 visdom的安装比较简单,可以直接使用pip命令. # visdom 安装指令 p…