记录学习<Hadoop+Spark大数据巨量分析与机器学习整合开发>这本书. 第五章 Hadoop Multi Node Cluster windows利用虚拟机实现模拟多节点集群构建 5.2-5.3 设置VirtualBox网卡,设置data1服务器 1. 设置网卡 网卡1设为网络地址转换(NAT) 网卡2设为仅主机(Host-Only)适配器 2. 编辑网络配置文件设置固定IP sudo gedit /etc/network/interfaces # NAT interface auto…
教你如何成为Spark大数据高手? Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么如何成为Spark大数据高手?下面就来个深度教程. Spark是发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,性能超过Hadoop百倍,从多迭代批量处理出发,兼收并蓄数据仓库.流处理和图计算等多种计算范式,是罕见的全能选手.Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理.图技术.机器学习.NoSQL查询等方面的所有核心…
转载自http://www.csdn.net/article/2013-07-08/2816149 Spark已正式申请加入Apache孵化器,从灵机一闪的实验室“电火花”成长为大数据技术平台中异军突起的新锐.本文主要讲述Spark的设计思想.Spark如其名,展现了大数据不常见的“电光石火”.具体特点概括为“轻.快.灵和巧”. 轻:Spark 0.6核心代码有2万行,Hadoop 1.0为9万行,2.0为22万行.一方面,感谢Scala语言的简洁和丰富表达力:另一方面,Spark很好地利用了H…
What is HDInsight? Microsoft Azure HDInsight 是基于 Hortonoworks Data Platform (HDP) 的 Hadoop 集群,包括Storm, HBase, Pig, Hive, Sqoop, Oozie, Ambari等(具体的组件请参看最后的附录).Azure HDInsight 支持 Windows的集群部署,也支持 Linux 集群部署.Hortonworks 是我目前所知唯一支持在 Windows 上部署的 Hadoop C…
Spark主要的编程语言是Scala,选择Scala是因为它的简洁性(Scala可以很方便在交互式下使用)和性能(JVM上的静态强类型语言).Spark支持Java编程,但对于使用Java就没有了Spark-Shell这样方便的工具,其它与Scala编程是一样的,因为都是JVM上的语言,Scala与Java可以互操作,Java编程接口其实就是对Scala的封装. 大数据未来几年发展的重点方向,大数据战略已经在十八届五中全会上作为重点战略方向,中国在大数据方面才刚刚起步,但是在美国已经产生了上千亿…
1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中.注意到IP是32位的,最多有个2^32个IP.同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率.然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求. 2.搜索引擎会通过日志文件把用户每次检索使用的所有…
没有套路真的是送!! 大家都知道,大数据行业spark很重要,那话我就不多说了,贴心的大叔给你找了份spark的资料.   多啰嗦两句,一个好的程序猿的基本素养是学习能力和自驱力.视频给了你们,能不能坚持下来学习,就只能靠自己了,另外大叔每周会不定期更新<每日五分钟搞定大数据>原创系列,感谢关注. 注意:资料仅供个人学习使用,不可外传,不可用作任何商业用途,谢谢 Spark视频内容: Spark部署 Spark编程模型(1) Spark运行架构(1) Spark SQL原理和实践(4) Spa…
此程序功能: 1.完成对10.4G.csv文件各个元素频率的统计 2.获得最大的统计个数 3.对获取到的统计个数进行降序排列 4.对各个元素出现次数频率的统计 import org.apache.spark.{SparkConf, SparkContext} /** */ object 大数据统计 { def main(args: Array[String]): Unit = { val conf=new SparkConf().setAppName("大数据").setMaster(…
HDInsight cluster on Linux 登录 Azure portal (https://manage.windowsazure.com ) 点击左下角的 NEW 按钮,然后点击 DATA SERVICES 按钮,点击 HDINSIGHT,选择 HADOOP ON LINUX,如下图所示. 输入集群名称,选择集群大小和账号,设定集群的密码和存储账号,下表是各个参数的含义和配置说明. Name Value Cluster Name Name of the cluster. Clust…
WCF传输数据量的能力受到许多因素的制约,如果程序中出现因需要传输的数据量较大而导致调用WCF服务失败的问题,应注意以下配置: 1.MaxReceivedMessageSize:获取或设置配置了此绑定的通道上可以接收的消息的最大大小. basicHttpBinding等预定义的绑定一般具有MaxReceivedMessageSize属性,CustomBinding则需要在Transport中定义. 示例代码: <bindings> <customBinding> <bindi…
原文: https://mp.weixin.qq.com/s?__biz=MjM5NzAyNTE0Ng==&mid=207895956&idx=1&sn=58e8af26fd3c6025acfa5bc679d2ab01&scene=1&srcid=0919Sz0SAs6DNlHTl7GYxrGW&key=dffc561732c2265121a47642e3bebf851225841a00d06325b09e7d125978a26d60870026c28e53…
1.驱动程序通过一个SparkContext对象来访问Spark,此对象代表对计算集群的一个连接.shell已经自动创建了一个SparkContext对象.利用SparkContext对象来创建一个RDD 2.spark和mapreduce区别 mapreduce分为两个阶段map和reduce,两个阶段结束mapreduce任务就结束,所以在在一个job里能做的处理很有限即只能在map和reduce里处理. spark是迭代式计算模型,一个job可以分为n个阶段,因为它是内存迭代式的,我们处理…
#!/bin/bash size="120Y*10W"date1=`date +%F_%H-%M-%S`config="spark-submit \ --jars /data0/work_space/service/spark-2.0.0-bin-hadoop2.4/jars/hadoop-lzo-0.4.15.jar \ --master yarn \ --deploy-mode client \ --num-executors 100 \ --driver-memory…
Basic Functions sc.parallelize(List(1,2,3,4,5,6)).map(_ * 2).filter(_ > 5).collect() *** res: Array[Int] = Array(6, 8, 10, 12) *** val rdd = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10)) rdd.reduce(_+_) *** res: Int = 55 *** union & intersection &…
Apache Spark is an open source cluster computing system that aims to make data analytics fast - both fast to run and fast to write. BDAS, the Berkeley Data Analytics Stack, is an open source software stack that integrates software components being bu…
一.Spark介绍 Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎.Spark是开源的类Hadoop MapReduce的通用并行框架,Spark拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法. 二.安装Spark 环境:Docker(17.04.0-ce).镜像Ubuntu(16.04.3).…
一文看懂大数据的技术生态圈,Hadoop,hive,spark都有了 转载: 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器.HDFS(Hadoo…
成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师.开发设计人员的工作水平,旨在培养专业的大数据Hadoop与Spark技术架构专家,更好地服务于各个行业的大数据项目开发和落地实施. 2015年近期公开课安排:(全国巡回开班) 08月21日——08月23日大连 09月23日——09月25日北京 10月16日——10月18日成都 11月27日——11…
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop/Yarn平台,但目前对大数据的实时分析工具,业界公认最佳为Spark.Spark是基于内存计算的大数据并行计算框架,Spark目前是Apache软件基金会旗下,顶级的开源项目,Spark提出的DAG作为MapReduce的替代方案,兼容HDFS.H…
本项目主要讲解了一套应用于互联网电商企业中,使用Java.Spark等技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.页面跳转行为.购物行为.广告点击行为等)进行复杂的分析.用统计分析出来的数据,辅助公司中的PM(产品经理).数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务.最终达到用大数据技术来帮助提升公司的业绩.营业额以及市场占有率的目标. 1.课程研发环境 开发工具: Eclipse Linux:CentOS 6…
分类 当前措施 说明 百度竞价如何进行数据分析(SEM工程师)数据来源: 1. 百度后台推广数据:api 总展现 总点击 点击率 总消费 点击均价 BDP功能点 1. 串联百度->网站商务通->预约系统 2. 多维度报表 3. 对比报表 4. 钻取功能 2. 在线对话数据: 在线对话数 对话发起率 客户名片数 客户民片成本 网页转化率 3. 市场业务数据: 业务成交数 销售转化率 平均成交成本 总营收 ROI 目前效果值?ROI 投资回报率报告:效果分析 目前:与HIS对接,手工导出导入的数据…
1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理及计算模型,但缺点是不能图形展示,R语言的sparkly则提供了R语言和Spark的接口,实现了在数据量大的情况下,应用Spark的快速数据分析和处理能力结合R语言的图形化展示功能,方便业务分析,模型训练. 但是要想使多人同时共享R和Spark,还需要其他的相关组件,下图展示了所有相关的组件及应用:…
前言 上篇文章中讲到,在智能电网的控制与管理侧中,数据的分析和挖掘.可视化等工作属于核心环节.除此之外,二次侧中需要对数据进行采集,数据共享平台的搭建显然也涉及到数据的管理.那么在智能电网领域中,数据工程到底是如何实施的呢? 本文将以IBM的Itelligent Utility Network产品为例阐述智能电网中的数据工程,它是IBM声称传统电网向智能电网转变的整体方案(看过上篇文章的童鞋想必会清楚这样的说法是片面狭隘的,它只能算是智能电网中的数据工程). 另一方面,如今是一个数据爆炸的时代,…
一.Linux lucene: 全文检索引擎的架构 solr: 基于lucene的全文搜索服务器,实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面. 推荐一个大数据学习群 142974151每天晚上20:10都有一节[免费的]大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享, 二.Hadoop HDFS: 分布式存储系统,包含NameNode,DataNode.NameNode:元数据,DataNode.Data…
首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各有各的用处.互相之间又有重合.你能够用汤锅直接当碗吃饭喝汤,你能够用小刀或者刨子去皮. 可是每一个工具有自己的特性,尽管奇怪的组合也能工作,可是未必是最佳选择. 大数据,首先你要能存的下大数据. 传统的文件系统是单机的,不能横跨不同的机器. HDFS(Hadoop Distributed File…
转载自https://www.oschina.net/news/73939/hadoop-spark-%20difference 谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生.但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同. 解决问题的层面不一样 首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同.Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集…
最近我问了很多Java开发人员关于最近12个月内他们使用的是什么大数据工具. 这是一个系列,主题为: 语言web框架应用服务器SQL数据访问工具SQL数据库大数据构建工具云提供商今天我们就要说说大数据.根据维基百科,大数据是数据集的一个广义的术语,并且该数据集是如此庞大和复杂,以致于传统的数据处理应用程序无法胜任. 在许多情况下,使用SQL数据库用于存储/检索数据就足够了.但在另一些情况下,要么SQL数据库规模不够,要么还有更好的工具.这一切都取决于使用情况. 现在让我们来讨论一下存储/处理数据…
压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan.baidu.com/s/1i4Gh3Xb 密码:25jc DT大数据梦工厂大数据spark蘑菇云Scala语言全集(持续更新中) http://www.tudou.com/plcover/rd3LTMjBpZA/ 1 Spark视频王家林第1课:大数据时代的“黄金”语言Scala 2 Spark视…
转载自http://www.ibm.com/developerworks/cn/opensource/os-twitterstorm/ 流式处理大数据简介 Storm 是一个开源的.大数据处理系统,与其他系统不同,它旨在用于分布式实时处理且与语言无关.了解 Twitter Storm.它的架构,以及批处理和流式处理解决方案的发展形势. Hadoop(大数据分析领域无可争辩的王者)专注于批处理.这种模型对许多情形(比如为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…