P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\times 2^j \times (j!) \] \(S(i, j)\)表示第二类斯特林数,递推公式为: \[ S(i, j) = j \times S(i - 1, j) + S(i - 1, j - 1), 1 \le j \le i - 1 \] 边界条件…
[题解]P4091 [HEOI2016/TJOI2016]求和 [P4091 HEOI2016/TJOI2016]求和 可以知道\(i,j\)从\(0\)开始是可以的,因为这个时候等于\(0\).这种题目都要从\(0\)开始或许比较好(Itst语) 然后就开始化式子吧 原式= \[ \sum_{i=0}^{n} \sum_{j=0}^n {i \brace j}2^j j! \] 斯特林容斥式子展开一下,并且我们知道当\(k>j\)时,\({j \choose k}=0\),所以扩大枚举范围到\…
传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j!\] \[Ans=\sum_{j=0}^n2^j\times j!\sum_{i=0}^nS(i,j)\] 根据第二类斯特林数的通项公式代入,有\[Ans=\sum_{j=0}^n2^j\times j!\sum_{i=0}^n\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k…
题面 传送门 思路 首先,我们发现这个式子中大部分的项都和$j$有关(尤其是后面的$2^j\ast j!$),所以我们更换一下枚举方式,把这道题的枚举方式变成先$j$再$i$ $f(n)=\sum_{j=0}^n2^j\ast j!\sum_{i=0}^nS_i^j$ 第二类斯特林数有一个基于组合意义的公式: $S_i^j=\frac1{j!}\sum_{k=0}^j(-1)^kC_j^k(j-k)^i=\sum_{k=0}^j\frac{(-1)^k(j-k)^i}{k!(j-k)!}$ 把这…
Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1. 边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i) 你能帮帮他吗? Input 输入只有一个正整数 Output 输出f(n).由于结果会很大,输出f(n)…
留待警戒 FFT的时候长度要写的和函数里一样啊XD 瞎扯 这是个第二类斯特林数的理性愉悦颓柿子题目 颓柿子真的是让我hi到不行啦(才没有) 前置芝士 一个公式 \[ \sum_{i=0}^n t^i = \frac{t^{n+1}-1}{t-1} \] 第二类斯特林数 第二类斯特林数的是指把n个对象放到m个集合里面的方案数 其递推式是 \[ S_{n}^{m}=S_{n-1}^{m-1}+mS_{n-1}^{m} \] 容斥原理的得到的通式 \[ S_n^m=\frac{1}{m!}\sum_{…
题目大意:给你$n(n\leqslant10^5)$,求:$$\sum\limits_{i=0}^n\sum\limits_{j=0}^i\begin{Bmatrix}i\\j\end{Bmatrix}\times2^j\times j!$$$\begin{Bmatrix}n\\m\end{Bmatrix}$表示第二类斯特林数,递推公式为$\begin{Bmatrix}n\\m\end{Bmatrix}=m\begin{Bmatrix}n-1\\m\end{Bmatrix}+\begin{Bma…
题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题解 终于不是神仙题了啊... 首先\(O(n\log n)\)的FFT做法非常明显,直接用容斥展开,这里不再赘述了.发现最后就是要求一个\(\sum^{n}_{k=0}\sum^{n}_{j=k}(-1)^{j-k}{j\choose k}2^j(\sum^{n}_{i=0}k…
原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\end{array}\right\} 2^{j} \times j ! \\ &=\sum_{i=0}^{n} \sum_{j=0}^{n}\left\{\begin{array}{c}{i} \\ {j}\end{array}\right\} 2^{j} \times j ! \\ &=\su…
传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^j*j!\sum_{i=j}^{n}S(i,j)\] 又因为\[S(i,j)=\frac{1}{j!}\sum_{k=0}^{j}(-1)^k*\binom{j}{k}*(j-k)^i\] 所以\[f(n)=\sum_{j=0}^{n}2^j*j!\sum_{i=0}^{n}\frac{1}{j!}…