查阅了很多资料,逐渐知道了one hot 的编码,但是始终没理解sklearn. preprocessing.OneHotEncoder()如何进行fit()的?自己琢磨了一下,后来终于明白是怎么回事了. 先看one hot 的编码的理解:引用至:https://blog.csdn.net/wy250229163/article/details/52983760 网上关于One-hot编码的例子都来自于同一个例子,而且结果来的太抖了.查了半天,终于给搞清楚这个独热编码是怎么回事了,其实挺简单的,…
Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. New in version 0.17: scale_ is recommended instead of deprecated std_. mean_…
Recently, I was writing module of feature engineering, i found two excellently packages -- tsfresh and sklearn. tsfresh has been specialized for data of time series, tsfresh mainly include two modules, feature extract, and feature select: from tsfres…
案例:该数据集的是一个关于每个学生成绩的数据集,接下来我们对该数据集进行分析,判断学生是否适合继续深造 数据集特征展示 GRE 成绩 (290 to 340) TOEFL 成绩(92 to 120) 学校等级 (1 to 5) 自身的意愿 (1 to 5) 推荐信的力度 (1 to 5) CGPA成绩 (6.8 to 9.92) 是否有研习经验 (0 or 1) 读硕士的意向 (0.34 to 0.97) 1.导入包 import numpy as np import pandas as pd…