首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
在python&numpy中切片(slice)
】的更多相关文章
在python&numpy中切片(slice)
在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…
Python numpy中矩阵的用法总结
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
Python numpy 中常用的数据运算
Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计算的基础包.具有以下功能: 快速高效的多维数组对象ndarray ndarray表示的是N维数组对象. ndarray是一个通用的同构数据多维容器,也就是说,其中的元素必须都是相同类型的.每个数组里面都有一个shape和一个dtype shape表示各个维度大小的元组dtype表示数组数据类型 除非是显示的设…
python numpy中sum()时出现负值
import numpy a=numpy.random.randint(1, 4095, (5000,5000)) a.sum() 结果为负值, 这是错误的,a.sum()的类型为 int32,如何做才能是结果显示正确呢?按照如下做法: c=numpy.int64(a).sum() 结果为正直,正确,c的类型为int64. 原因为下面,结果的类型跟元素的类型一样. 如果 d=numpy.int64(a.sum()) ,是不管用的,结果还是负值. 其他人不会出现这种状况,有的会出现,原因还是不太清…
【转】Python高级特性——切片(Slice)
摘录廖雪峰网站 定义一个list: 1 L = ['haha','xixi','hehe','heihei','gaga'] 取其前三个元素: >>> L[0],L[1],L[2] ('haha', 'xixi', 'hehe') 这个方法有点蠢,因为如果元素非常多,我们需要取其前N个元素,怎么办? 可能会想到用循环: >>> r=[] >>> n = 3 >>> for i in range(n): ... r.append(L[i…
python之列表切片(slice)
使用索引获取列表的元素(随机读取) 列表元素支持用索引访问,正向索引从0开始 colors=["red","blue","green"] colors[0] =="red" colors[1]=="blue" 同时,也可以使用负向索引(python中有序序列都支持负向索引) colors[-1]=="green" 列表的切片操作 切片操作不是列表特有的,python中的有序序列都支持切片…
Python Numpy中数据的常用的保存与读取方法
在经常性读取大量的数值文件时(比如深度学习训练数据),可以考虑现将数据存储为Numpy格式,然后直接使用Numpy去读取,速度相比为转化前快很多. 下面就常用的保存数据到二进制文件和保存数据到文本文件进行介绍: 1.保存为二进制文件(.npy/.npz) numpy.save 保存一个数组到一个二进制的文件中,保存格式是.npy 参数介绍 numpy.save(file, arr, allow_pickle=True, fix_imports=True) file:文件名/文件路径 arr:要存…
Day7 python高级特性-- 切片 Slice
先举一个例子,取list或tuple中的某几个元素: 1.取 ['a','b','c','d','e','f'] 第1.2.5.6个元素: >>> a = ['a','b','c','d','e','f'] >>> [ a[0], a[1], a[4], a[5] ] ['a', 'b', 'e', 'f'] 2.取前x个元素可以用循环的方式将0~(x-1) 索引范围内的元素取出 …
python numpy中数组.min()
import numpy as np a = np.array([[1,5,3],[4,2,6]]) print(a.min()) #无参,所有中的最小值 print(a.min(0)) # axis=0; 每列的最小值 print(a.min(1)) # axis=1:每行的最小值…
Python Numpy中transpose()函数的使用
在Numpy对矩阵的转置中,我们可以用transpose()函数来处理. 这个函数的运行是非常反常理的,可能会令人陷入思维误区. 假设有这样那个一个三维数组(2*4*2): array ([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) (1). 错误的观点 我们通常的想法是 从x轴看去,0, 1 ,2 ,3 从y轴看去,0,4 从z轴看去,0, 8 这样…