Spark分区器浅析】的更多相关文章

分区器作用:决定该数据在哪个分区 概览: 仅仅只有pairRDD才可能持有分区器,普通RDD的分区器为None 在分区器为None时RDD分区一般继承至父RDD分区 初始RDD分区数: 由集合创建,RDD分区数为cores总数 由本地文件创建,RDD分区数为本地文件分片数 由HDFS文件创建,RDD分区数为block数 1.HashPartitioner 计算公式:x=key.hashcode%分区数,如果为正 x即该数据所在分区,如果为负 x+总分区数 即为当前key所在分区 触发情况: re…
最近因为手抖,在Spark中给自己挖了一个数据倾斜的坑.为了解决这个问题,顺便研究了下Spark分区器的原理,趁着周末加班总结一下~ 先说说数据倾斜 数据倾斜是指Spark中的RDD在计算的时候,每个RDD内部的分区包含的数据不平均.比如一共有5个分区,其中一个占有了90%的数据,这就导致本来5个分区可以5个人一起并行干活,全都压到一个人身上了.遇到这种问题,网上有很多的解决办法: 比如这篇写的就不错:http://www.cnblogs.com/jasongj/p/6508150.html 倒…
在spark中,框架默认使用的事hashPartitioner分区器进行对rdd分区,但是实际生产中,往往使用spark自带的分区器会产生数据倾斜等原因,这个时候就需要我们自定义分区,按照我们指定的字段进行分区.具体的流程步骤如下: 1.创建一个自定义的分区类,并继承Partitioner,注意这个partitioner是spark的partitioner 2.重写partitioner中的方法 override def numPartitions: Int = ??? override def…
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
本节内容 ------------------ · Spark为什么要分区 · Spark分区原则及方法 · Spark分区案例 · 参考资料 ------------------ 一.Spark为什么要分区    分区概念:分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要分区,这个借用…
一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 二.为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变…
一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 二.为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变…
分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要进行分区 数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件,…
RDD的分区器 Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数. 注意: (1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD分区器的值是None (2)每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的. Hash分区 HashPartitioner分区…
最近经常有小伙伴在本公众号留言,核心问题都比较类似,就是虽然接触Spark有一段时间了,但是搞不明白一个问题,为什么我从HDFS上加载不同的文件时,打印的分区数不一样,并且好像spark.default.parallelism这个参数时不是一直起作用?其实笔者之前的文章已有相关介绍,想知道为什么,就必须了解Spark在加载不同的数据源时分区决定机制以及调用不用算子时并行度决定机制以及分区划分. 其实之前的文章<Spark的分区>.<通过spark.default.parallelism谈…