相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 CentOS7安装CDH 第四章:CDH的版本选择和安装方式 CentOS7安装CDH 第五章:CDH的安装和部署-CDH5.7.0 CentOS7安装CDH 第六章:CDH的管理-CDH5.12 CentOS7安装CDH 第七章:CDH集群Hadoop的HA配置 CentOS7安装CDH 第八章:…
一. 读取和保存说明 SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式 读取:通用和专用 保存 保存有四种模式: 默认: error : 输出目录存在就报错 append: 向输出目录追加 overwrite : 覆盖写 ignore: 忽略,不写 二. 数据格式 1. Parquet Spark SQL的默认数据源为Parquet格式.Parquet是一种能够有效存储嵌套数据的列式存储格式. 数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需…
一.JdbcRDD与关系型数据库交互 虽然略显鸡肋,但这里还是记录一下(点开JdbcRDD可以看到限制比较死,基本是鸡肋.但好在我们可以通过自定义的JdbcRDD来帮助我们完成与关系型数据库的交互.这点和Hadoop需要借助sqoop等工具进行是有优势的!) 给出一个demo的参考链接:https://www.2cto.com/database/201705/635388.html 二.RDD依赖关系 1.窄依赖 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partitio…
Spark On Yarn: 从0.6.0版本其,就可以在在Yarn上运行Spark 通过Yarn进行统一的资源管理和调度 进而可以实现不止Spark,多种处理框架并存工作的场景 部署Spark On Yarn的方式其实和Standalone是差不多的,区别就是需要在spark-env.sh中添加一些yarn的环境配置,在提交作业的时候会根据这些配置加载yarn的信息,然后将作业提交到yarn上进行管理 首先请确保已经部署了Yarn,相关操作请参考: hadoop2.2.0集群安装和配置 部署完…
摘抄自:https://tech.meituan.com/spark-tuning-basic.html 一.概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常…
官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级…
在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.TransportContext.TransportClientFactory.TransportServer.Outbox.Inbox等等基础的知识都已经在前面剖析过了. 可以参照如下文章做进一步了解. p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12…
本次此时是在SPARK2,3 structured streaming下测试,不过这种方案,在spark2.2 structured streaming下应该也可行(请自行测试).以下是我测试结果: 成功测试结果: 准备工作:创建maven项目,并在pom.xml导入一下依赖配置: <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <spark.versi…
铭文一级: ======Pull方式整合 Flume Agent的编写: flume_pull_streaming.conf simple-agent.sources = netcat-sourcesimple-agent.sinks = spark-sinksimple-agent.channels = memory-channel simple-agent.sources.netcat-source.type = netcatsimple-agent.sources.netcat-sourc…
一.SparkSQL的进化之路 1.0以前:   Shark 1.1.x开始:SparkSQL(只是测试性的)  SQL 1.3.x:          SparkSQL(正式版本)+Dataframe 1.5.x:          SparkSQL 钨丝计划 1.6.x:       SparkSQL+DataFrame+DataSet(测试版本) 2.x: SparkSQL+DataFrame+DataSet(正式版本) SparkSQL:还有其他的优化 StructuredStreami…