Spark学习一:Spark概述】的更多相关文章

Spark学习之Spark Streaming(9) 1. Spark Streaming允许用户使用一套和批处理非常接近的API来编写流式计算应用,这就可以大量重用批处理应用的技术甚至代码. 2. Spark Streaming使用离散化(discretized steam)作为抽象表示,叫做DStream.DStream是随时间推移而收到的数据的序列. 3. DSteam支持两种操作:转换操作(transformation),会生成一个新的DStream:另一种是输出操作(output op…
Spark学习之Spark SQL(8) 1. Spark用来操作结构化和半结构化数据的接口--Spark SQL. 2. Spark SQL的三大功能 2.1 Spark SQL可以从各种结构化数据(例如JSON.Hive.Parquet等)中读取数据. 2.2 Spark SQL不仅支持在Spark程序内使用SQL语句进行查询,也支持从类似商业智能软件Tableau这样的外部工具中通过标准数据库连接器(JDBC/ODBC)连接Spark SQL进行查询. 2.3 当在Spark程序内使用Sp…
Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. Spark特定的优先级顺序来选择实际配置: 优先级最高的是在用户代码中显示调用set()方法设置选项: 其次是通过spark-submit传递的参数: 再次是写在配置文件里的值: 最后是系统的默认值. 3.查看应用进度信息和性能指标有两种方式:网页用户界面.驱动器和执行器进程生成的日志文件. 4.…
1.1 什么是Spark ​ Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. ​ 一站式管理大数据的所有场景(批处理,流处理,sql) ​ spark不涉及到数据的存储,只做数据的计算 ​ Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点: ​ 但不同于MapReduce的是Job中间输出结果可以保存在内存中,…
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. 和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流(discretized stream)作为抽象表示,叫作 DStream.DStream 是随时间推…
下面来看看更复杂的情况,比如,当调度器进行流水线执行(pipelining),或把多个 RDD 合并到一个步骤中时.当RDD 不需要混洗数据就可以从父节点计算出来时,调度器就会自动进行流水线执行.上一篇博文结尾处输出的谱系图使用不同缩进等级来展示 RDD 是否会在物理步骤中进行流水线执行.在物理执行时,执行计划输出的缩进等级与其父节点相同的 RDD 会与其父节点在同一个步骤中进行流水线执行.例如,当计算 counts 时,尽管有很多级父 RDD,但从缩进来看总共只有两级.这表明物理执行只需要两个…
一.使用SparkConf配置Spark 对 Spark 进行性能调优,通常就是修改 Spark 应用的运行时配置选项.Spark 中最主要的配置机制是通过 SparkConf 类对 Spark 进行配置.当创建出一个 SparkContext 时,就需要创建出一个 SparkConf 的实例. import org.apache.spark.SparkContext import org.apache.spark.SparkConf object Test { def main(args: A…
Spark安装 spark运行环境 spark是Scala写的,运行在jvm上,运行环境为java7+ 如果使用Python的API ,需要使用Python2.6+或者Python3.4+ Spark1.6.2  -  Scala 2.10    Spark 2.0.0  -  Scala  2.11 Spark下载 下载地址:http://spark.apache.org/downloads.html 搭建spark,不需要Hadoop,如有Hadoop集群,可下载对应版本解压 Spark目录…
许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用, 还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. Spark Streaming 使用离散化流( discretized stream)作为抽象表示, 叫作 DStream. DStream 是随时间推移而收到的数据的序列.在内部,每个时间区间收到…
本文主要是讲解Spark在Windows环境是如何搭建的 一.JDK的安装 1.1 下载JDK 首先需要安装JDK,并且将环境变量配置好,如果已经安装了的老司机可以忽略.JDK(全称是JavaTM Platform Standard Edition Development Kit)的安装,去Oracle官网下载,下载地址是Java SE Downloads . 上图中两个用红色标记的地方都是可以点击的,点击进去之后可以看到这个最新版本的一些更为详细的信息,如下图所示: 下载完之后,我们安装就可以…
一.官网介绍 1.什么是Spark 官网地址:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 从右侧最后一条新闻看,Spark也用于AI人工智能 spark是一个实现快速通用的集群计算平台.它是由加州大学伯克利分校AMP实验室 开发的通用内存并行计算框架,用来构建大型的.低延迟的数据分析应用程序.它扩展了广泛使用的MapReduce计算 模型.高效的支撑更多计算模式,包括交互式查询和流处理.spark的一个主要特点是能够在内存中进…
本文主要是讲解Spark在Windows环境是如何搭建的 一.JDK的安装 1.1 下载JDK 首先需要安装JDK,并且将环境变量配置好,如果已经安装了的老司机可以忽略.JDK(全称是JavaTM Platform Standard Edition Development Kit)的安装,去Oracle官网下载,下载地址是Java SE Downloads . 上图中两个用红色标记的地方都是可以点击的,点击进去之后可以看到这个最新版本的一些更为详细的信息,如下图所示: 下载完之后,我们安装就可以…
什么是Spark Streaming Spark Streaming类似于Apache Storm,用于流式数据的处理 Spark Streaming有高吞吐量和容错能力强等特点.Spark Streaming支持的数据输入源很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等 数据输入后可以用Spark的高度抽象原语如:map.reduce.join.window等进行运算.而结果也能保存在很多地方,如HDFS,数据库等 Spark Streaming也能和…
Spark环境搭建 下载包 所需Spark包:我选择的是2.2.0的对应Hadoop2.7版本的,下载地址:https://archive.apache.org/dist/spark/spark-2.2.0/ Spark 集群高可用搭建 对于 Spark Standalone 集群来说, 当 Worker 调度出现问题的时候, 会自动的弹性容错, 将出错的 Task 调度到其它 Worker 执行 但是对于 Master 来说, 是会出现单点失败的, 为了避免可能出现的单点失败问题, Spark…
[时间]2014年11月18日 [平台]Centos 6.5 [工具]scp [软件]jdk-7u67-linux-x64.rpm spark-worker-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm spark-core-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.noarch.rpm spark-history-server-1.1.0+cdh5.2.0+56-1.cdh5.2.0.p0.35.el6.…
一.简介 Spark SQL 提供了以下三大功能. (1) Spark SQL 可以从各种结构化数据源(例如 JSON.Hive.Parquet 等)中读取数据. (2) Spark SQL 不仅支持在 Spark 程序内使用 SQL 语句进行数据查询,也支持从类似商业智能软件 Tableau 这样的外部工具中通过标准数据库连接器(JDBC/ODBC)连接 SparkSQL 进行查询. (3) 当在 Spark 程序内使用 Spark SQL 时,Spark SQL 支持 SQL 与常规的 Py…
数据获得的方式多种多样,常用的公开数据集包括: 1.UCL机器学习知识库:包括近300个不同大小和类型的数据集,可用于分类.回归.聚类和推荐系统任务.数据集列表位于:http://archive.ics.uci.edu/ml/ 2.Amazon AWS公开数据集:包含的通常是大型数据集,可通过Amazon S3访问.这些数据集包括人类基因组项目.Common Crawl网页语料库.维基百科数据和Google Books Ngrams.相关信息可参见:http://aws.amazon.com/p…
什么事spark Spark是一种快速.通用.可扩展的大数据计算引擎.项目是用Scala进行编写,基于内存计算的 包括交互式查询和流处理 spark内置项目 Spark SQL:是 Spark 用来操作结构化数据的程序包. Spark Streaming:是 Spark 提供的对实时数据进行流式计算的组件. Spark MLlib:提供常见的机器学习(ML)功能的程序库. GraphX:提供一个分布式图计算框架,能高效进行图计算. 集群管理器:Spark设计为可以高效地在一个计算节点到数千个计算…
http://dblab.xmu.edu.cn/blog/spark/ 厦大数据库实验室博客 总结.分享.收获 实验室主页 首页 大数据 数据库 数据挖掘 其他 子雨大数据之Spark入门教程  林子雨老师 2016年10月30日 (updated: 2017年5月28日) 37020 [版权声明]博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!版权所有,侵权必究! Spark最初诞生于美国加州大学伯克利分校(UC Berkeley)的AMP实验室,是一个可应用于大规模数据处理的快速…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
1:Spark的官方网址:http://spark.apache.org/ Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL.Spark Streaming.GraphX.MLlib等子项目,Spark是基于内存计算的大数据并行计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群.2 Spark是MapReduce的替代方案,而且兼容HDFS.Hive,可融入H…
本篇笔记主要说一下Spark到底是个什么东西,了解一下它的基本组成部分,了解一下基本的概念,为之后的学习做铺垫.过于细节的东西并不深究.在实际的操作过程中,才能够更加深刻的理解其内涵. 1.什么是Spark? Spark是由美国加州伯克利大学的AMP实验室开发的,一款基于内存计算的大数据并行计算框架,可用于构建大型的.低延迟的数据分析应用程序. 说白了就是搞数据计算分析的框架,过于细节的东西在学习过程中再去体会,一口吃不成胖子,反而会噎死人. 2.Spark的内置模块 来看一下Spark内置哪些…
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法.由于scikit-learn中没有关联算法的类库,而Spark MLlib有,本文的使用以Spark MLlib作为使用环境. 1. Spark MLlib关联算法概述 在Spark MLlib中,也只实现了两种关联算法,即我们的FP Tree和PrefixSpan,而像Apriori,GSP之类的关联算法是没有的.而…
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大…
链接相关 课件代码:http://pan.baidu.com/s/1nvbkRSt 教学视频:http://pan.baidu.com/s/1c12XsIG 这是最近买的付费教程,对资料感兴趣的可以在下方留下邮件地址,我会定期进行密码发送. 课程简介 以目前主流的,最新的spark稳定版2.1.x为基础,深入浅出地介绍Spark生态系统原理及应用,内容包括Spark各组件(Spark Core/SQL/Streaming/MLlib)基本原理,使用方法,实战经验以及在线演示.本课程精心设计了五个…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
要学习分布式以及数据分析.机器学习之类的,觉得可以通过一些实际的编码项目入手.最近Spark很火,也有不少招聘需要Spark,而且与传统的Hadoop相比,Spark貌似有一些优势.所以就以Spark来学习下. 安装部署等可以参考之前的文章:http://www.cnblogs.com/charlesblc/p/6014158.html 貌似主从Spark都部署在了 m42n05 机器上.看后续是否需要增加其他slave. 首先看了知乎这篇文章,了解了一些基础(link) 在2010年开源,目前…
标签(空格分隔): Spark 学习中的知识点:函数式编程.泛型编程.面向对象.并行编程. 任何工具的产生都会涉及这几个问题: 现实问题是什么? 理论模型的提出. 工程实现. 思考: 数据规模达到一台机器无法处理的时候,如何在有限的时间内对整个数据集进行遍历及分析? Google针对大数据问题提出的一些解决方案: MapReduce: 计算框架: GFS:数据存储 BigTable:NoSQL始祖. Hadoop是根据MapReduce和GFS两大论文所做的开源实现,因此,它主要解决2大问题:数…
Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   通过转换来自于其他RDD,如map,filter等 2.创建操作(creation operation):RDD的创建由SparkContext来负责. 3.转换操作(transformation operation):将一个RDD通过一定操作转换为另一个RDD. 4.控制操作(control o…
1.调度 分为FIFO和FAIR两种模式 创建调度池:sc.setLocalProperty("spark.scheduler.pool", "pool6") 终止调度池:sc.setLocalProperty("spark.scheduler.pool6", null) 配置调度池: 通过conf/fairscheduler.xml sparkConf.set("spark.scheduler.allocation.file"…