The Havel-Hakimi Algorithm】的更多相关文章

题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这个序列. 令\(S=(d_1,d_2,\dots,d_n)\)为有限多个非负整数组成的非递增序列. S可简单图化当且仅当有穷序列\(S'=(d_2-1,d_3-1,...,d(d_1+1)-1,d(d_1+2),...,d_n)\)只含有非负整数且是可简单图化的. 最后判断一下是否都是零就好了 感觉…
题目链接:E - New Year and the Acquaintance Estimation 题解参考: Havel–Hakimi algorithm 和 Erdős–Gallai theorem 按照后面那个定理说的,枚举$k∈[1,n]$,对于每一个$k$,计算出向等式两边加入$a_{n+1}$的合法范围,最后所有范围求交即可 最后按照前面那个定理说的,枚举最终区间的时候,对于合法真正的$a_{n+1}$进行输出即可 比赛的时候没看见后面那个定理,推了半天 --------------…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 4137   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化.简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不…
http://www.cnblogs.com/wally/p/3281361.html poj 1659(havel算法) 题目链接:http://poj.org/problem?id=1659 思路:  havel算法的应用: (1)对序列从大到小进行排序. (2)设最大的度数为 t ,把最大的度数置0,然后把最大度数后(不包括自己)的 t 个度数分别减1(意思就是把度数最大的点与后几个点进行连接) (3)如果序列中出现了负数,证明无法构成.如果序列全部变为0,证明能构成,跳出循环.前两点不出…
题目链接 /* *题目大意: *给出一个图的每个点的度的序列,求能否构成一个简单图,如果能构出简单图,则输出图的邻接矩阵; * *算法思想: *Havel定理的应用; *给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化; *若图为简单图,则称此序列可简单图化; * *可图化的判定: *d1+d2+……dn==0(mod 2); * *处理过程: *每次处理度数最大的点,设其度数为d则将他与度数最大的d个点(不含自己)个连一条边(若该点度数大于0),…
主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the bound…
题目链接:http://poj.org/problem?id=1659 思路:  havel算法的应用: (1)对序列从大到小进行排序. (2)设最大的度数为 t ,把最大的度数置0,然后把最大度数后(不包括自己)的 t 个度数分别减1(意思就是把度数最大的点与后几个点进行连接) (3)如果序列中出现了负数,证明无法构成.如果序列全部变为0,证明能构成,跳出循环.前两点不出现,就跳回第一步! 简单例子: 4 4 3 3 2 2 第二步后0 3 2 2 1 2 排完续后3 2 2 2 1 0 第二…
题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化.简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况. #include <cstdi…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debugcool/archive/2011/04/23/HDOJ2454.html 一句话,顶点的度序列 Havel 定理~ 定义:给出一个无向图的顶点度序列 {dn},要求判断能否构造出一个简单无向图. 分析: 贪心的方法是每次把顶点按度大小从大到小排序,取出度最大的点Vi,依次和度较大的那些顶点Vj连接…