青云的机房组网方案(简单) 青云现在要将 nn 个机房连成一个互相连通的网络.工程师小王设计出一个方案:通过在 nn 个机房之间铺设 n-1n−1 条双向的光纤,将所有的机房连接.可以假设数据在两个机房之间的光纤传输需要 11 单位时间.每个机房 ii 有一个初始值 a_ia​i​​,当两个机房的初始值之间互质时,我们认为这两个机房之间的传输性能是非常重要的.请帮小王计算出所有数值互质的机房对之间的传输时间之和. 输入格式 第一行输入一个正整数 nn,第二行输入 nn 个正整数 a_1...a_…
题目链接 1.对于简单的版本n<=500, ai<=50 直接暴力枚举两个点x,y,dfs求x与y的距离. 2.对于普通难度n<=10000,ai<=500 普通难度解法挺多 第一种,树形dp+LCA 比赛的时候,我猜测对于不为1的n个数,其中两两互质的对数不会很多,肯定达不到n^2 然后找出所有互质的对数,然后对为1的数进行特殊处理.(初略的估计了下,小于500的大概有50个质数,将n个数平均分到这些数中,最后大概有10000*50*200=10^7) 对所有的非1质数对,采用离…
大意: 给定树, 点$i$的点权为$a_i$, 求$\sum\limits_{a_i \perp a_j}dis(i,j)$ 中等难度可以枚举每条边的贡献, 维护子树内每个数出现次数$a$, 转化为求$\sum\limits_{i=1}^{500}\sum\limits_{j=1}^{500}([gcd(i,j)=1]a_i(tot_i-a_i))$, 反演一下可以$O(500log500)$计算. #include <iostream> #include <sstream> #i…
1.介绍 floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题. 2.思想: Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis…
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执行Dijkstra算法或者Bellman-Ford算法n次,就可以求出每一对顶点之间的最短路径和最短路径的长度,总的时间复杂度为O(n^3). (2)采用Floyd算法,时间复杂度也是O(n^3),但是形式更为直接. 1.介绍 floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以…
图的最短路径问题主要包括三种算法: (1)Dijkstra (没有负权边的单源最短路径) (2)Floyed (多源最短路径) (3)Bellman (含有负权边的单源最短路径) 本文主要讲使用C++实现简单的Floyd算法,Floyd算法原理参见 Floyd–Warshall algorithm Floyd算法简单实现(C++) #include<iostream> using namespace std; #define MAXVEX 10 #define INFINITY 65535 t…
通信网络 201709-4 一看到题目分析了题意之后,我就想到用floyd算法来求解每一对顶点的最短路.如果一个点和任意一个点都有最短路(不为INF),那么这就是符合的一个答案.可是因为题目超时,只能拿60分. 另一种解法就是使用dfs把图简单的遍历一遍就可以了.这里要用到两遍dfs反着也要建图. #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #includ…
目录 1 问题描述 2 解决方案 2.1 使用Floyd算法得到最短距离示例 2.2 具体编码   1 问题描述 何为Floyd算法? Floyd算法功能:给定一个加权连通图,求取从每一个顶点到其它所有顶点之间的最短距离.(PS:其实现功能也称完全最短路径问题) Floyd算法思想:将顶点i到j的直接距离依次与顶点i到顶点j之间加入k个中间节点之后的距离进行比较,从中选出最短的一组距离,即为顶点i到顶点j的最短距离,然后重复上述步骤求取其它顶点之间的最短距离. 2 解决方案 2.1 使用Floy…
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 2.算法描述 1)算法思想原理: Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新做…
最短路径 问题背景:地图上有很多个城市,已知各城市之间距离(或者是所需时间,后面都用距离了),一般问题无外乎就是以下几个: 从某城市到其余所有城市的最短距离[单源最短路径] 所有城市之间相互的最短距离[任意两点最短路径] 各城市距离一致,给出需要最少中转方案 [最少中转] 深度优先搜索 适用范围:啥都不适用,只能处理n<10的情况 深搜求最短路径的思想和用深搜迷宫寻路有一点像,找出所有的从起点到目标点的路径,选出其中最短的一条. 此算法仅供娱乐参考,实际不会用它的,因为算法复杂度是$O(n!)$…