3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status][Discuss] Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 后缀数组看这里 http://www.cnblogs.com/candy99/p/6250732.html 反串建SAM然后Parent Tree就是后缀树了 后缀树上两点的LCP…
3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status][Discuss] Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N<=500000,S由小写英文字母组成 集训的时候想出来了还讲了一下 bingo! 前面…
3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2357  Solved: 1067[Submit][Status][Discuss] Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N<=500000,S由小写英文字母组成 Source [Submit][Status][…
3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N<=500000,S由小写英文字母组成 Source 后缀数组+单调栈水过... #include<map> #include<cmath> #include<…
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有两幅面孔呢). 看代码实现吧,不大容易口头解释,把加的和减的分开算就可以了,减去的通过倒着建sam(相当于建一棵后缀树),然后算每个len取的次数实现,注意树归中一些避免重复操作. /**********************************************************…
题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1}^n i+j = (n-1)*\sum_{i=1}^n = (n-1)*\frac{n*(n+1)}{2}\] 对于后半部分: SAM:求后缀的LCP,我们可以想到将字符串反转,求前缀的最长公共后缀. parent树上每个叶子节点都对应一个前缀,两个节点间的最长公共后缀在它们的LCA处,长度为le…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3238 [题目大意] 给出一个串,设T[i]表示从第i位开始的后缀, 求sum(len(T[i])+len(T[j])-2*lcp(T[i],T[j])) [题解] 根据反串的后缀自动机建立后缀树, 则两点的LCA在自动机中的length就是他们的LCP, 树形DP统计一下即可. [代码] #include <cstdio> #include <algorithm> #i…
首先只有lcp(i,j)需要考虑 因为SAM的parent树是后缀的前缀的最长公共后缀(--),所以把这个串倒过来建SAM,这样就变成了求两个前缀的最长公共后缀,长度就是这两个前缀在parent树上的lcs对应的最大长度dis 这里用treedp解决即可,就是合并一下size #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace st…
[传送门[(https://www.lydsy.com/JudgeOnline/problem.php?id=3238) 解题思路 首先原式可以把\(len\)那部分直接算出来,然后通过后缀数组求\(lcp\).算\(\sum lcp\)的时候,刚开始傻了想要直接算贡献,结果越写越乱,后来想想只需要用单调栈把每个点的控制范围算出来即可,正着做一遍反着做一遍.注意还要考虑两个\(h[i]\)相邻并相等时的影响.还有一种比较自然的解法是后缀树,\(lcp\)其实就为两个点的\(lca\)的深度,所以…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3238 题解: 后缀数组套路深. 问题转化为求出任意两个后缀的LCP之和 在计算贡献时,各种不爽,然后就套路的从height[i]数组下手.计算出 L[i]和 R[i],L[i]:找出排名最小(即为 L[i])的后缀与排名为 i的后缀的 LCP==hei[i]R[i]:找出排名最大(即为 R[i])的后缀与排名为 i的后缀的 LCP==hei[i](更直白一点就是在hei数组中找出最大的包含…
题目传送门:洛谷 P4248. 题意简述: 定义两个字符串 \(S\) 和 \(T\) 的差异 \(\operatorname{diff}(S,T)\) 为这两个串的长度之和减去两倍的这两个串的最长公共前缀的长度. 给定一个字符串,定义从第 \(i\) 个字符开始的后缀为 \(Suf_i\). 求 \(\sum_{1\le i<j\le n}\operatorname{diff}(Suf_i,Suf_j)\). 题解: 化简式子,原式等于 \[\begin{align*}&\left(\su…
后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #…
Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N<=500000,S由小写英文字母组成 Solution 有LCP,求个SA和height 把式子拆开求 前面的那些len的和最后就是 \((1+2+...+n)*(n-1)\) 看后面的lcp那一块,单独考虑每个height的贡献,对每个height找一段区间,使得这个height是区间中最小的,然后只要是…
3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3047  Solved: 1375 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 HINT 2<=N<=500000,S由小写英文字母组成 Source [分析] 这题先把sigma len 加上. 然后考虑一下减掉的是什么. 对于每个子…
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Father[i] 之间的边对答案的贡献(比如这条边对黑点对距离和的贡献就是子树内部的黑点数 * 子树外部的黑点数 * 这条边的权值). 然后DFS来求,枚举 i 的每个儿子 j,现在的 f[i][] 是包含了 [1, j-1] 子树,然后两重循环枚举范围是 [1, j - 1] 的子树总 Size 和…
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u,v之间有一条边,图上u,v对应的点之间也有一条边. \(n \leq 17\) 分析 看到\(n \leq 17\),我们应该想到状态压缩.但直接用子集dp的时间复杂度为\(O(3^nn^3)\),会TLE.所以我们压缩的状态可能有问题,考虑优化. 显然题目给了两个限制: 原树中的每条边都要在图中…
luogu P4248 [AHOI2013]差异 链接 luogu 思路 \(\sum\limits_{1<=i<j<=n}{{len}(T_i)+{len}(T_j)-2*{lcp}(T_i,T_j)}\) =\(\sum\limits_{1<=i<j<=n}{{len}(T_i)+{len}(T_j)}-\sum\limits_{1<=i<j<=n}2*{lcp}(T_i,T_j)\) 前半部分是\(\frac{n*(n+1)(n-1)}{2}\)…
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<=500000) 考虑树形DP,我们令mn[i]表示i节点无法与1节点相连切除的最小权值.显然有mn[i]=min(E(fa,i),mn[fa]).大致就是i到1的简单路径上的最小边.我们对于每个询问.把询问的点不妨称为关键点.令dp[i]表示i节点不能与子树的关键点连接切掉的最小权值.那么有,如果son[i]…
一看到这道题觉得很水,打了递归树形DP后RE了一组,后来发现必须非递归(BFS) 递归版本84分: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ],next[],v[],c[],cnt=,f[]; ]; ; void insect(int x,int y,int z){next[cnt]=point[x];point[x]=cnt;v[cnt]=y;c[cnt]=…
一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&…
树形dp... dp(x, 0)表示结点x不放士兵, 由父亲控制: dp(x, 1)表示结点x不放士兵, 由儿子控制: dp(x, 2)表示结点x放士兵. ------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace…
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传送门 每个充电的点贡献1,就是求每个点充电的概率的和 考虑树形DP ,分别求子树内的影响和父亲的影响 \(g[i]\)表示i被子树i里的点充电的概率,\(f[i]\)表示i被充电的概率 因为被子树充电时子树里的点不可能被i充电, \[g[i] = q_i \bigcup g_v : (i,v) \i…
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自己的想法吧 如果直接上树形DP的话,必须要保存当前子树对应了图上的点的集合才行,要不然做不到1对1.但这样复杂度就炸掉了至少需要\(3^n\)枚举子集 我们可以用容斥原理来弱化这个限制,使得允许多对1 \[ 树上n个点对应图上n个点的方案数\ = \\ \] \[ n个点对应\le n个点\ -\…
题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前i棵子树花费为j能贡献给x的最大价值. 那么 \(g[i][j] = max{g[i-1][j-k]+f[v][l*need[x]][k]}\).\(need[x]\)为x需要子节点v的个数,\(l\)为合成x的个数,这个同样需要枚举. 那么对于每个\(l\),可以枚举用多少个x合成上一层,更新f,…
4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved: 49[Submit][Status][Discuss] Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人也会变成叛徒,并且他的所有下属都会变成叛徒…
给出一颗n个点带边权的树(n<=20000),求随机选择两个点,使得它们之间的路径边权是3的倍数的概率是多少. 首先总的对数是n*n,那么只需要统计路径边权是3的倍数的点对数量就行了. 考虑将无根树化为有根树,令dp[x][i]表示以x点为路径起点,x的某个子孙为路径终点的边权值模3为i的点对数量. 那么显然有dp[x][i]+=dp[son[x]][(i-w)%3]. 考虑点对之间的路径,要么是它们的LCA是点对中的一个点,要么不在点对中,因此统计一下以每个点x为LCA时的路径边权值%3为i的…
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给出一些点,问控制这些点的最小代价是多少. 分析: 观察一下数据范围发现算算法的复杂度可能和d有关.横看竖看这像是一个树形dp,所以我们就把d搞到状态方程里面去嘛怎么就完全没有想到呢...... 既然要用树形dp,就要先分析一下性质. 一个点如果被选择成为控制点,那么它可以控制的点有:子树中深度不超过…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4711 就是树形DP,然而也想了半天才把转移想清楚: f[x][j][0] 表示 x 去上面 j 步的仓库,f[x][j][1] 表示 x 去子树内下去 j 步的仓库而且整个子树都算好了: f[x][j][0] 就是 d[j] 加上儿子们的 f[u][...][1] 与 f[u][j+1][0] 的最小值: f[x][j][1] 就是选一个儿子加它的 f[u][j-1][1],其它儿子是 f…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 一开始想到了树形DP,处理一下子树中的最小值,向上的最小值,以及子树中的最长路和向上的最长路,就可以得到答案,可以DP: 然而写着写着写不下去了,不会求向上最小值和最长路: 于是看看TJ,原来要再记录一个次长路! 然而写挫了,写不下去了... #include<iostream> #include<cstdio> #include<cstring> #inc…
题意 给定字符串,令$s_i$表示第$i$位开始的后缀,求$\sum_{1\le i < j \le n} len(s_i)+len(s_j)-2\times lcp(s_i,s_j)$ 先考虑前面的和式,直接计算为$\frac{n(n^2-1)}{2}$,考虑后面的和式,$lcp$相关可以用sam求解,sam形成的parent树是原串的前缀树,所以两个串的最长公共后缀是在parent树上最近公共祖先对应的状态的长度$maxlen_s-maxlen_{pa_s}$,将原串反向建立sam得到后缀树…