Flink系列之流式】的更多相关文章

本文仅是自己看书.学习过程中的个人总结,刚接触流式,视野面比较窄,不喜勿喷,欢迎评论交流. 1.为什么是流式? 为什么是流式而不是流式系统这样的词语?流式系统在我的印象中是相对批处理系统而言的,用来处理流数据,实现数据处理功能的一个系统,而流式一词提醒我要以数据产生的方式去看待数据和以及处理过程,即在现实生活中,数据是以流的形式不断产生的,处理的过程应贴近数据产生的方式. 2.流与批 在处理数据时,对数据而言有:无界和有界之分.无界可以理解为不知道数据产生的停止时间,在数学上可以用前闭后开( […
什么是流式处理呢? 这个问题其实我们大部分时候是没有考虑过的,大多数,我们是把流式处理和实时计算放在一起来说的.我们先来了解下,什么是数据流. 数据流(事件流) 数据流是无边界数据集的抽象 我们之前接触的数据处理,大多都都是有界的.例如:处理某天的数据.某个季度的数据等 无界意味着数据是无限地.持续增长的 数据流会随着时间的推移,源源不断地加入进来 数据流无处不再 信息卡交易 电商购物 快递 网络交换机的流向数据 设备传感器发出的数据 - 这些数据都是无穷无尽的 每一件事情,都可以看成事件序列…
Flink 1.10.0 于近期刚发布,释放了许多令人激动的新特性.尤其是 Flink SQL 模块,发展速度非常快,因此本文特意从实践的角度出发,带领大家一起探索使用 Flink SQL 如何快速构建流式应用. 本文将基于 Kafka, MySQL, Elasticsearch, Kibana,使用 Flink SQL 构建一个电商用户行为的实时分析应用.本文所有的实战演练都将在 Flink SQL CLI 上执行,全程只涉及 SQL 纯文本,无需一行 Java/Scala 代码,无需安装 I…
你是否有过这样的念头:如果能立刻马上看到我想要的数据,我就能更好地决策?   市场变化越来越快,企业对于数据及时性的需求,也越来越大,另一方面,当下数据容量呈几何倍暴增,数据的价值在其产生之后,也将随着时间的流逝,逐渐降低.因此,我们最好在事件发生之后,迅速对其进行有效处理,实时,快速地处理新产生的数据,帮助企业快速地进行异常管理和有效决策,而不是待数据存储在一起之后,再进行批量处理.   一:sparkStreaming+hbase整合应用,助力企业实时运营监控   对于不作更新的数据,可以通…
我的新伸缩盒子.http://www.cnblogs.com/leee/p/5533436.html…
原创文章,谢绝任何形式转载,否则追究法律责任! ​流的世界,有点乱,群雄逐鹿,流实在太多,看完这个马上又冒出一个,也不知哪个才是真正的牛,据说Flink是位重量级选手,能流计算,还能批处理, 和其他伙伴关系也融洽的很,与HDFS/File/SQL/MQ往来都不在话下,今天我们就来实战一把. 环境:Idea2019.03/Gradle6.0.1/JDK11.0.4/Lambda/RHEL8.0/VMWare15.5/Springboot2.2.1.RELEASE/Mysql8.0.11/Kafka…
随着Flink 1.10的发布,对SQL的支持也非常强大.Flink 还提供了 MySql, Hive,ES, Kafka等连接器Connector,所以使用起来非常方便. 接下来咱们针对构建流式SQL应用文章的梗概如下: 1. 搭建流式SQL应用所需要的环境准备. 2. 构建一个按每小时进行统计购买量的应用. 3. 构建每天以10分钟的粒度进行统计应用. 4. 构建按分类进行排行,取出想要的结果应用. 1. 搭建流式应用所需要的环境准备 Kafka,用于将数据写入到Kafka中,然后Flink…
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Apache Flink是一个分布式.有状态的流计算引擎. 下面将正式开启Flink系列的学习笔记与总结.(https://flink.apache.org/).此篇是准备篇,主要介绍流处理相关的基础概念.别小看这些理论,对后续的学习与理解很…
Apache Flink是一个分布式流式和批量数据处理的开源平台. Flink的核心是一个流式数据流动引擎,它为数据流上面的分布式计算提供数据分发.通讯.容错.Flink包括几个使用 Flink引擎创建应用程序的编程接口: 1. DataStream API  集成在Java和Scala中中的流数据格式: 2.DataSet API 集成在JAVA.Scala.Python中的静态数据: 3. Table API 在JAVA.Scala中使用的类SQL的表达式: Flink 也包含为特定用户场景…
随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便捷性等方面满足业务日益苛刻的要求. 在这种形势下,新型流式处理框架Flink通过创造性地把现代大规模并行处理技术应用到流式处理中来,极大地改善了以前的流式处理框架所存在的问题.飞马网于3月13日晚,邀请到大数据技术高级架构师-旷东林,在线上直播中,旷老师向我们分享了Flink在诸多方面的创新以及它本…
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Streaming process层是底层实现. 其中, flink dataset api使用及原理 介绍了DataSet Api flink DataStream API使用及原理介绍了DataStream Api flink中的时间戳如何使用?---Watermark使用及原理 介绍了底层实现的基础Wat…
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Streaming process层是底层实现. 其中, flink dataset api使用及原理 介绍了DataSet Api flink DataStream API使用及原理介绍了DataStream Api flink中的时间戳如何使用?---Watermark使用及原理 介绍了底层实现的基础Wat…
前面介绍了批量处理的WorkCount是如何执行的 <从flink-example分析flink组件(1)WordCount batch实战及源码分析> <从flink-example分析flink组件(2)WordCount batch实战及源码分析----flink如何在本地执行的?> 这篇从WordCount的流式处理开始 /** * Implements the "WordCount" program that computes a simple wor…
flink 中自身虽然实现了大量的connectors,如下图所示,也实现了jdbc的connector,可以通过jdbc 去操作数据库,但是flink-jdbc包中对数据库的操作是以ROW来操作并且对数据库事务的控制比较死板,有时候操作关系型数据库我们会非常怀念在java web应用开发中的非常优秀的mybatis框架,那么其实flink中是可以自己集成mybatis进来的. 我们这里以flink 1.9版本为例来进行集成. 如下图为flink内部自带的flink-jdbc. 创建一个flin…
背景 字节跳动开发套件数据集成团队(DTS ,Data Transmission Service)在字节跳动内基于 Flink 实现了流批一体的数据集成服务.其中一个典型场景是 Kafka/ByteMQ/RocketMQ -> HDFS/Hive .Kafka/ByteMQ/RocketMQ -> HDFS/Hive(下面均称之为 MQ dump,具体介绍可见 字节跳动基于Flink的MQ-Hive实时数据集成 ) 在数仓建设第一层,对数据的准确性和实时性要求比较高.​ 目前字节跳动中国区 M…
项目中有一处功能需求是:需要在历史数据查询页面进行查询字段的选择,然后由后台数据库动态生成对应的excel表格并下载到本地. 如果文件较小,解决办法是先将要传送的内容全生成在内存中,然后再一次性传入Response对象中: 如果文件较大时,我们可以考虑向HttpResponse传递一个迭代器,流式的向客户端传递数据. view.py视图 @csrf_exempt def exportData(request): format = request.GET.get('format') pk = re…
大约各位看官君多少也听说了Storm/Spark/Flink,这些都是大数据流式处理框架.如果一条手机组装流水线上不同的人做不同的事,有的装电池,有的装屏幕,直到最后完成,这就是典型的流式处理.如果手机组装是先全部装完电池,再交给装屏幕的组,直到完成,这就是旧式的集合式处理.今天,就来先说说JDK8中的流,虽然不是很个特新鲜的话题,但是一个很好的开始,因为——思想往往比细节重要! 准备: Idea2019.03/Gradle5.6.2/JDK11.0.4/Lambda 难度:新手--战士--老兵…
  摘要:本文将选取市面上一些流计算框架包括 Flink .Spark .Hazelcast,从场景需求出发,在核心功能.资源与性能.用户体验.框架完整性.维护性等方面展开分析和测评,剖析实时数据框架的特色.   前面的两篇文章(实时数据引擎系列文章一 和 实时数据引擎系列文章二)讲到了数据集成 CDC 的一些背景和问题, 在说流引擎之前, 我们先拿市面上的一些流计算框架做一些分析和评测, 实时数据框架的选手很多, 每家都有自己的特色, 这篇文章会按照我们的场景需求, 从以下几个方面去做一些探索…
相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yahoo S4,Cloudera Impala,Apache Spark和Apache Tez纷纷加入大数据和NoSQL阵营.本文尝试探讨流式处理系统用到的技术,分析它们与大规模批量处理和OLTP/OLAP数据库的关系,并探索一个统一的查询引擎如何才能同时支持流式.批量和OLAP处理. 在Grid Dy…
2011年,twitter的“一小撮”工程师为了提高他们内部的分析和管理能力,用业余时间为他们的产品构建了一套易用.优雅.灵活.可扩展的前端工具集--BootStrap.Bootstrap由MARK OTTO和Jacob Thornton所设计和建立,在github上开源之后,迅速成为该站上最多人watch&fork的项目.大量工程师踊跃为该项目贡献代码,社区惊人地活跃,代码版本进化非常快速,官方文档质量极其高(可以说是优雅),同时涌现了许多基于Bootstrap建设的网站:界面清新.简洁;要素…
一 前言 看了一下,距离上一篇博客的发表已经过去了4个月,时间过得好快啊.本篇博客是JDFS系列的第三篇博客,JDFS的目的是为了实现一个分布式的文件管理系统,前两篇实现了基本的上传.下载功能,但是那还不能算作分布式文件管理.本篇博客将在前两篇的基础上增加一系列分布式的功能,比如流式云存储,就是客户端把本地的文件切分成若干片后,以冗余的方式存储到分布式数据结点上:所谓的流式传递读者可以在网上搜索一下HDFS的流式传递,基本上就是那个意思,正文中会详细介绍这个,此处不再赘述.除了分布式存储外,当然…
一 前言 本篇博客是JDFS系列博客的第四篇,从最初简单的上传.下载,到后来加入分布式功能,背后经历了大量的调试,尤其当实验的虚拟计算结点数目增加后,一些潜在的隐藏很深的bug就陆续爆发.在此之前笔者并没有网络编程的经验,大约半年之前读到unix环境高级编程的socket章节,然后就突然对网络编程产生了兴趣,于是后来就想着写一款http远程下载小工具(是笔者另外一篇博客,链接请点击我).再到后来,由于笔者之前读研期间接触过map-reduce,知道HDFS这个东西,于是突发奇想,不如自己动手写一…
原创文章,转载请务必将下面这段话置于文章开头处. 本文转发自技术世界,原文链接 http://www.jasongj.com/kafka/kafka_stream/ Kafka Stream背景 Kafka Stream是什么 Kafka Stream是Apache Kafka从0.10版本引入的一个新Feature.它是提供了对存储于Kafka内的数据进行流式处理和分析的功能. Kafka Stream的特点如下: Kafka Stream提供了一个非常简单而轻量的Library,它可以非常方…
上篇的内容,我们探讨了分布式计算中的MapReduce与批处理.所以本篇我们将继续探索分布式计算优化的相关细节,并且分析MapReduce与批处理的局限性,看看流式计算是否能给我们在分布式计算层面提供一个更好的解决方案. 1.MapReduce的局限 MapReduce作业是独立于其他作业,输入与输出目录通过分布式存储系统串联.MapReduce作业的存在相互的依赖关系,前后相互依赖的作业需要将后面作业的输入目录配置为与之前作业的输出目录,工作流调度器必须在第一个作业完成后才开始第二个作业. 依…
0. 背景 最近我在做流式实时分布式计算系统的架构设计,而正好又要参加CSDN博文大赛的决赛.本来想就写Spark源码分析的文章吧.但是又想毕竟是决赛,要拿出一些自己的干货出来,仅仅是源码分析貌似分量不够.因此,我将最近一直在做的系统架构的思路整理出来,形成此文.为什么要参考Storm和Spark,因为没有参照效果可能不会太好,尤其是对于Storm和Spark由了解的同学来说,可能通过对比,更能体会到每个具体实现背后的意义. 本文对流式系统出现的背景,特点,数据HA,服务HA,节点间和计算逻辑间…
一.设计思想及介绍 基本思想:“一切数据都是流,批是流的特例” 1.Micro Batching 模式 在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定程度上就增加了延时.具体如下示意图: 2.Native Streaming 模式 Native Streaming 计算模式每条数据的到来都进行计算,这种计算模式显得更自然,并且延时性能达到更低.具体如下示意图: 很明显Native Streaming模式占据了流计算领域 "低延时" 的核…
Kafka Stream-Spark Streaming-Storm流式计算框架比较选型 elasticsearch-head Elasticsearch-sql client NLPchina/elasticsearch-sql: Use SQL to query Elasticsearch kafka stream vs spark streaming vs storm_百度搜索 [翻译]Kafka Streams简介: 让流处理变得更简单 - devos - 博客园 kafka strea…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理.Spark Streaming有高吞吐量和容错能力强等特点.Spark Streaming支持的数据源有很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等.数据输入后可以用Spark的高度抽象操作如:map.reduce.join.window等进行运算.而结果也能保存在很多地方,如HDFS,数据库等. 特性 1.易用性 可以像编写离线批处理一样去…