Storm流分组介绍】的更多相关文章

Storm流分组介绍                流分组是拓扑定义的一部分,每个Bolt指定应该接收哪个流作为输入.流分组定义了流/元组如何在Bolt的任务之间进行分发.在设计拓扑的时候需要定义数据如何在组件之间进行交换(流如何被Bolt消耗处理).    一个流分组指定每个Bolt消耗哪个流.一个节点可以发出多个数据流,流分组允许我们有选择的接收流进行消耗处理.                Storm内置了7种流分组方式和一个自定义分组方式(由InputDeclarer接口定义).Inpu…
Storm Grouping: Shuffle Grouping :随机分组,尽量均匀分布到下游Bolt中 将流分组定义为混排.这种混排分组意味着来自Spout的输入将混排,或随机分发给此Bolt中的任务.shuffle grouping对各个task的tuple分配的比较均匀. Fields Grouping :按字段分组,按数据中field值进行分组:相同field值的Tuple被发送到相同的Task 这种grouping机制保证相同field值的tuple会去同一个task,这对于Word…
简单聊聊Storm的流分组策略 首先我要强调的是,Storm的分组策略对结果有着直接的影响,不同的分组的结果一定是不一样的.其次,不同的分组策略对资源的利用也是有着非常大的不同,本文主要讲一讲localOrShuffle这个分组对资源利用的重大改善.最后,不同的分组对项目的逻辑也起着至关重要的决定,比如在写数据的时候不同的分组策略会导致死锁. 简单理解数据流分组 拓扑定义的一部分就是为每个Bolt指定输入的数据流,而数据流分组则定义了在Bolt的task之间如何分配数据流. 目前的Storm1.…
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么? 3.Supervisor的作用是什么? 4.Topology与Worker之间的关系是什么? 5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成? 6.storm稳定的原因是什么? 7.如何运行Topology? strom jar all-your-code.jar backtype.storm.MyT…
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么?3.Supervisor的作用是什么?4.Topology与Worker之间的关系是什么?5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成?6.storm稳定的原因是什么?7.如何运行Topology?strom jar all-your-code.jar backtype.storm.MyTopolog…
转自:http://www.aboutyun.com/thread-7394-1-1.html 了解Storm:http://www.aboutyun.com/thread-9547-1-2.html 问题导读:1.hadoop有master与slave,Storm与之对应的节点是什么?2.Storm控制节点上面运行一个后台程序被称之为什么?3.Supervisor的作用是什么?4.Topology与Worker之间的关系是什么?5.Nimbus和Supervisor之间的所有协调工作有mast…
转自:http://www.cnblogs.com/wuxiang/p/5629138.html 1.hadoop有master与slave,Storm与之对应的节点是什么?2.Storm控制节点上面运行一个后台程序被称之为什么?3.Supervisor的作用是什么?4.Topology与Worker之间的关系是什么?5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成?6.storm稳定的原因是什么?7.如何运行Topology?stro…
一.stream group分组介绍 Stream 的分组分为随机分组.字段分组.全部分组.全局分组.无分组.直接分组,自定义分组 二.group的介绍 1.Shuffle grouping:通过tuple获取任务到supout,然后再由spout将任务分发到Bolt上.这种分组是随机性的,没有规律可言,任务的多少可能会跟被分配机器性能有关. 2.Fields grouping :   根据指定字段将tuple进行分组.例如,根据“user-id”字段,相同“user-id”的tuple总是分发…
Storm是一个分布式.高容错.高可靠性的实时计算系统,它对于实时计算的意义相当于Hadoop对于批处理的意义.Hadoop提供了Map和Reduce原语.同样,Storm也对数据的实时处理提供了简单的 spout和bolt原语.Storm集群表面上看和Hadoop集群非常像,但Hadoop上面运行的是MapReduce的Job,而Storm上面运行的是topology(拓扑),它们非常不一样,比如一个MapReduce的Job最终会结束, 而一个Storm topology永远运行(除非显式杀…
目录 storm的分组策略 根据实例来分析分组策略 common配置: Shuffle grouping shuffle grouping的实例代码 ShuffleGrouping 样例分析 Fields grouping Fields grouping 的实例 FieldGrouping 样例分析 storm的分组策略 洗牌分组(Shuffle grouping): 随机分配元组到Bolt的某个任务上,这样保证同一个Bolt的每个任务都能够得到相同数量的元组. 字段分组(Fields grou…