之前写了一篇PHP+Redis链表解决高并发下商品超卖问题,今天介绍一些如何使用PHP+Redis+Lua解决高并发下商品超卖问题. 为何要使用Lua脚本解决商品超卖的问题呢? Redis在2.6版本后原生支持Lua脚本功能,允许开发者使用Lua语言编写脚本传到Redis中执行. 将复杂的或者多步的redis操作,写为一个脚本,一次提交给redis执行,减少反复连接redis的次数,提升性能. 原子操作.Redis会将整个脚本作为一个整体执行,中间不会被其他请求插入.因此在脚本运行过程中无需担心…
转自:https://blog.csdn.net/zzaric/article/details/80641786 应用场景如下: 公司内有多个业务系统,由于业务系统内有向用户发送消息的服务,所以通过统一消息系统对外暴露微服务接口供外部业务系统调用,所有公司内业务系统的消息(短信,APP,微信)推送都由统一消息系统去推送,短信推送需要走外部短信通道商去发送短信,APP和微信走内部系统的push服务器,但是不管是短信通道商还是内部push服务器都会有每秒上限的控制.在这假设n/s条. 以下是统一消息…
这里我们主要利用Redis的setnx的命令来处理高并发. setnx 有两个参数.第一个参数表示键.第二个参数表示值.如果当前键不存在,那么会插入当前键,将第二个参数做为值.返回 1.如果当前键存在,那么会返回0. 创建库存表 CREATE TABLE `storage` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `number` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=Inno…
这里我们主要利用 Redis 的 setnx 的命令来处理高并发. setnx 有两个参数.第一个参数表示键.第二个参数表示值.如果当前键不存在,那么会插入当前键,将第二个参数做为值.返回 1.如果当前键存在,那么会返回 0 . 创建库存表 CREATE TABLE `storage` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `number` int(11) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE…
这里我借鉴了网上其他大佬的观点: 一:高并发带来的挑战 原因:秒杀抢购会经常会带来每秒几万的高并发场景,为了更快的返回结果给用户. 吞吐量指标QPS(每秒处理请求数),假设一个业务请求响应耗时为100ms,我们有10台Web服务器,每台给它最大连接数500. 理想化计算方式: 10 * 500/0.1 = 50000 难道我们真的有处理5万并发? 不然.高并发场景下,Web服务器打开了越多的连接进程,CPU切换上下文的也越多.会增加CPU的压力,导致CPU业务请求响应耗时 会超出预期很多.可能你…
原文:http://blog.csdn.net/heyewu4107/article/details/71009712 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存 问题描述:某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 方案一 利用数据库锁机制,对记录进行锁定,再进行操作 SELECT * from goods where ID =1 for update; UPDATE goods set stock…
数据库:mysql 数据库的乐观锁:一般通过数据表加version来实现,相对于悲观锁的话,更能省数据库性能,废话不多说,直接看代码 第一步: 建立数据库表: CREATE TABLE `skill_activity` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '活动id', `name` varchar(20) NOT NULL COMMENT '活动名称', `num` bigint(10) NOT NULL COMMENT '活动数…
写在前面 之前,我们在<[高并发]高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!>一文中,详细讲解了高并发秒杀系统的架构设计,其中,我们介绍了可以使用Redis存储秒杀商品的库存数量.很多小伙伴看完后,觉得一头雾水,看完是看完了,那如何实现呢?今天,我们就一起来看看Redis是如何助力高并发秒杀系统的! 有关高并发秒杀系统的架构设计,小伙伴们可以关注 冰河技术 公众号,查看<[高并发]高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!>一文. 秒杀业务 在电商领域,存在着典型的秒杀…
利用redis实现分布式事务锁,解决高并发环境下库存扣减   问题描述: 某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 解决方案一 利用数据库锁机制,对记录进行锁定,再进行操作 select * from goods where id =1 for update ; update goods set count = count - 1 where id= 1; 利用排它锁将并行转化为串行操作,但该方案的性能和用户体验较差 解决方案二 利…
我们通常衡量一个Web系统的吞吐率的指标是QPS(Query Per Second,每秒处理请求数),解决每秒数万次的高并发场景,这个指标非常关键.举个例子,我们假设处理一个业务请求平均响应时间为100ms,同时,系统内有20台Apache的Web服务器,配置MaxClients为500个(表示Apache的最大连接数目). 那么,我们的Web系统的理论峰值QPS为(理想化的计算方式): 20*500/0.1 = 100000 (10万QPS) 咦?我们的系统似乎很强大,1秒钟可以处理完10万的…