决策树1 -- ID3_C4.5算法】的更多相关文章

声明: 1.本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用.欢迎转载,但请注明出处(即:本帖地址). 2,因为本人在学习初始时有非常多数学知识都已忘记,因此为了弄懂当中的内容查阅了非常多资料,所以里面应该会有引用其它帖子的小部分内容.假设原作者看到能够私信我,我会将您的帖子的地址付到以下. 3.假设有内容错误或不准确欢迎大家指正. 4.假设能帮到你,那真是太好了. 简单介绍 决策树是一种主要的分类和回归方法.这里总结的是其分类方法部分. 决策树是一种对实例进行分类…
决策树之C4.5算法 一.C4.5算法概述 C4.5算法是最常用的决策树算法,因为它继承了ID3算法的所有优点并对ID3算法进行了改进和补充. 改进有如下几个要点: 用信息增益率来选择属性,克服了ID3算法中信息增益选择属性时偏向选择取值多的属性的不足. C4.5算法选择决策属性的度量标准是增益比率gain ratio(Quinlan 1986).增益比率度量是用前面的增益度量Gain(S,A)和分裂信息度量Splitlnformation(S,A)来共同定义的.为防遗忘,在此贴出信息熵和和信息…
CART(Classification And Regression Tree),分类回归树,,决策树可以分为ID3算法,C4.5算法,和CART算法.ID3算法,C4.5算法可以生成二叉树或者多叉树,CART只支持二叉树,既可支持分类树,又可以作为回归树. 分类树: 基于数据判断某物或者某人的某种属性(个人理解)可以处理离散数据,就是有限的数据,输出样本的类别 回归树: 给定了数据,预测具体事物的某个值:可以对连续型的数据进行预测,也就是数据在某个区间内都有取值的可能,它输出的是一个数值 CA…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第22篇文章,我们继续决策树的话题. 上一篇文章当中介绍了一种最简单构造决策树的方法--ID3算法,也就是每次选择一个特征进行拆分数据.这个特征有多少个取值那么就划分出多少个分叉,整个建树的过程非常简单.如果错过了上篇文章的同学可以从下方传送门去回顾一下: 如果你还不会决策树,那你一定要进来看看 既然我们已经有了ID3算法可以实现决策树,那么为什么还需要新的算法?显然一定是做出了一些优化或者是进行了一些改进,不然新算…
一  ID3算法的大致思想 基本的ID3算法是通过自顶向下构造决策树来进行学习的.我们首先思考的是树的构造从哪里开始,这就涉及到选择属性进行树的构造了,那么怎样选择属性呢?为了解决这个问题,我们使用统计测试来确定每一个实例属性单独分类训练样例的能力,把分类能力最好的属性作为树根节点的测试.然后为根节点属性的每个可能值产生一个分支,并把训练样例排列到适当的分支之下.然后重复整个过程,用每个分支节点关联的训练样例来选取在该点被测试的最佳属性.这形成了对合格决策树的贪婪搜索,也就是算法从不回溯重新考虑…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
最近刚把<机器学习实战>中的决策树过了一遍,接下来通过书中的实例,来温习决策树构造算法中的ID3算法. 海洋生物数据:   不浮出水面是否可以生存 是否有脚蹼 属于鱼类 1 是 是 是 2 是 是 是 3 是 否 否 4 否 是 否 5 否 是 否 转换成数据集: def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['n…
决策树decision tree 什么是决策树输入:学习集输出:分类觃则(决策树) 决策树算法概述 70年代后期至80年代初期,Quinlan开发了ID3算法(迭代的二分器)Quinlan改迚了ID3算法,称为C4.5算法1984年,多位统计学家在著名的<Classification and regression tree>书里提出了CART算法ID3和CART几乎同期出现,引起了研究决策树算法的旋风,至今已经有多种算法被提出…
决策树<Decision Tree>是一种预測模型,它由决策节点,分支和叶节点三个部分组成. 决策节点代表一个样本測试,通常代表待分类样本的某个属性,在该属性上的不同測试结果代表一个分支:分支表示某个决策节点的不同取值.每一个叶节点代表一种可能的分类结果. 使用训练集对决策树算法进行训练,得到一个决策树模型.利用模型对未知样本(类别未知)的类别推断时.从决策树根节点開始,从上到下搜索,直到沿某分支到达叶节点,叶节点的类别标签就是该未知样本的类别. 网上有个样例能够非常形象的说明利用决策树决策的…
决策树模型 选择最好的特征和特征的值进行数据集划分 根据上面获得的结果创建决策树 根据测试数据进行剪枝(默认没有数据的树分支被剪掉) 对输入进行预测 模型树 import numpy as np def loadDataSet(fileName): #general function to parse tab -delimited floats dataMat = [] #assume last column is target value with open(fileName) as fr:…