uva10870 递推关系Recurrences】的更多相关文章

Consider recurrent functions of the following form:f(n) = a1f(n - 1) + a2f(n - 2) + a3f(n - 3) + : : : + adf(n - d); for n > d;where a1, a2, -, ad are arbitrary constants.A famous example is the Fibonacci sequence, defned as: f(1) = 1, f(2) = 1, f(n)…
题意:       给以个递推f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.,给你n,d,a1,a2..ad ,f[1],f[2]..f[d],让你求f[n]%m. 思路:       比较基础的矩阵题目,每次都构造一个d*d的矩阵,然后用快速幂求出来它的n-1次幂,然后在求出乘积就行了,简单构造,没有什么坑点.            #include<stdio.h> #inc…
题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第一个次遇到了矩阵大小不确定的矩阵快速幂,而且在这道题里面第一次明白了如何构造矩阵.算是矩阵快速幂的学习的一个小里程碑吧. f(n) = a1 *f(n - 1) + a2 *f(n - 2) + a3 *f(n - 3) + … + ad* f(n - d),  n > d.求f(n) 代码: //…
题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bits/stdc++.h> #define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++) #define ms(a,b) memset((a),(b),sizeof((a))) using namespace std; typedef long long L…
题意: F(n) =  a1 * F(n-1) + a2 * F(n-2)+ ···· + ad * F(n-d). 求给你的n . 很明显这是一道矩阵快速幂的题目. 题解: [Fn-1, Fn-2, Fn-3, ···, Fn-d] * A(矩阵) = [Fn, Fn-1, Fn-2, ···, Fn-d+1] . Fn  = 第一个矩阵 * A的第一列, 所以A矩阵的第一列为(a1, a2 , ··· ad). Fn = 第一个矩阵  * A的第二列, 所以A矩阵的第二列为(1, 0, 0,…
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; typedef long long Matrix[maxn][maxn]; typedef long long Vector[maxn]; int d, n, m; void matrix_mul(Mat…
UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d. 已知前d项求第n项 思路:矩阵高速幂,相应矩阵为 |a1 a2 a3 ... ad| |1 0 0 ... 0 0 0| |0 1 0 ... 0 0 0| |0 0 1 ... 0 0 0| |0 0 0 ... 0 0 0| |0 0 0 ... 1 0 0| |0 0 0…
Recurrences Input: standard input Output: standard output Consider recurrent functions of the following form: f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d. a1, a2, ..., ad - arbitrary constants. A famous example is th…
链接:传送门 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n 和 m 的关系可以进一步分析: 特殊的 n = 1 || m = 1 || n = 0 时只有一种方法 当 m < n时,即使苹果每个盘子放一个也没法放满所有盘子,题目允许有的盘子空着不放,所以我们可以将空盘子去掉,即 f ( m , n ) = f ( m , m ) 当 m >= n时,这时候有两种情况: n 个盘子中有一个空盘子,当有空盘子时,f…
https://vjudge.net/problem/UVA-10870 裸的矩阵快速幂 注意系数矩阵在前面 因为系数矩阵为d*d 方程矩阵为d * 1 放反了就是d * 1 d * d 不符合矩阵乘法 #include<bits/stdc++.h> using namespace std; typedef long long ll; ; struct mat { ll a[N][N]; } x, g; int n, m, d; ll a[N], f[N]; mat operator * (m…