证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少一个偶数,这个偶数里的2和b=2mn原有的2相乘得4,所以①②③三种情况下b必然是4的倍数. 而情况④中,b不再是4的倍数,让我们来看看a的情况 设m=2k+1,n=2j+1 则a=m2-n2=(2k+1)2-(2j+1)2=4k2+4k+1-(4j2+4j+1)=4(k2+k-j2-j) 明显,这…
Find Integer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 6597 Accepted Submission(s): 1852Special Judge Problem Description people in USSS love math very much, and there is a famous math…
勾股数:勾股数又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 要求:输出1000以内的勾股数 from math import sqrt for a in range(1,1000): for b in range(a,1000): c = sqrt(a * a + b * b) if c > 10000: break if c.is_integer(): #内置函数,判断一个浮点数是否长得像整…
Problem Description people in USSS love math very much, and there is a famous math problem give you two integers n,a,you are required to find 2 integers b,c such that an+bn=cn. Input one line contains one integer T;(1≤T≤1000000) next T lines contains…
Problem Description people in USSS love math very much, and there is a famous math problem . give you two integers n,a,you are required to find 2 integers b,c such that an+bn=cn. Input one line contains one integer T;(1≤T≤1000000) next T lines contai…
import math n = 0 for a in range(1,49): for b in range(a,49): c = math.ceil(math.sqrt(a**2+b**2)) if c<50 and c**2 == a**2 + b**2: if(n%6 == 0): print("%2d,%2d,%2d"%(a,b,c),end='\t') n+=1 n = 0 for a in range(1,49): for b in range(a,49): for…
题意: 给定一个整数L(L<=1e12),计算(x,y,z)组的个数.其中x<y<z,x^2+y^2=z^2,gcd(x,y)==1,gcd(x,z)==1,gcd(y,z)==1. 思路: 以下的方法可用来找出勾股数.设m>n . m 和 n 均是正整数, a = m^2-n^2 b = 2mn c = m^2+n^2 若 m 和 n 是互质,而且 m 和 n 其中有一个是偶数,计算出来的 (a, b, c) 就是素勾股数 然后我们需要的便是计算m,n互质 qie m,…
Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresp…