谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不太稳定.更新不够及时等.今日,谷歌推出了一款全新的开源强化学习框架 Dopamine,该框架基于 TensorFlow,主打灵活性.稳定性.复现性,能够提供快速的基准测试. 配套开源的还包括一个专用于视频游戏训练结果的平台,以及四种不同的机器学习模型:DQN.C51.简化版的 Rainbow 智能体…
循环神经网络.https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py. 自然语言处理(natural language processing, NLP)应用网络模型.与前馈神经网络(feed-forward neural network,FNN)不同,循环网络引入定性循环,信号在神经元传递不消失继续存活.传统神经网络层间全连接,层…
首先介绍一下anaconda,annoconda是一个开源的Python发行版本,里面集成了python.conda等多个科学包及其依赖项.安装完成之后,就可以使用conda版本管理器进行管理,可以让你的电脑运行多个版本的Python.tensorflow,conda通过创建不同的完全隔开的沙盒环境,使得不会出现版本不兼容的问题. 1.安装annoconda 到官网http://continuum.io/downloads下载anaconda Linux命令行中,可以通过一下命令直接下载 wge…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:付越 导语 Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://github.com/tensorflow/models ),大大降低了开发难度,利用现成的网络结构,无论fine-tuning还是重新训练方便了不少.最近笔者终于跑通TensorFlow Object Detection API的ssd_mobilenet_v1模型,这里记录下如何完整跑通数据准备到模型…
在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很多局限性,因此在另一些场景下我们需要其他的方法,比如本篇讨论的策略梯度(Policy Gradient),它是Policy Based强化学习方法,基于策略来学习. 本文参考了Sutton的强化学习书第13章和策略梯度的论文. 1. Value Based强化学习方法的不足 DQN系列强化学习算法主…
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础上,对经验回放部分的逻辑做优化.对应的算法是Prioritized Replay DQN. 本章内容主要参考了ICML 2016的deep RL tutorial和Prioritized Replay DQN的论文<Prioritized Experience Replay>(I…
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略.简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么下一次就不会犯同样的错误,如果遵守规则,那你妈妈兴许会给你一些奖励,最终的目标都是希望你在该吃饭的时候吃饭,该吃零食…
随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化学习的标准定义: 强化学习(Reinforcement Learning,简称RL)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益. 从本质上看,强化学习是一个通用的问题解决框架,其核心思想是 Trial & Error. 强化学习可以用一个闭环示意图来表示: 强化学习四元素…
原文地址: https://www.cnblogs.com/pinard/p/9797695.html ---------------------------------------------------------------------------------------- 在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础…
原文地址: https://www.cnblogs.com/pinard/p/9778063.html ----------------------------------------------------------------------------------------------- 在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得…
原文地址: https://www.cnblogs.com/pinard/p/9756075.html ------------------------------------------------------------------------------------------------------- 在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Le…
原文地址: https://www.cnblogs.com/pinard/p/9714655.html ----------------------------------------------------------------------------------------- 在强化学习系列的前七篇里,我们主要讨论的都是规模比较小的强化学习问题求解算法.今天开始我们步入深度强化学习.这一篇关注于价值函数的近似表示和Deep Q-Learning算法. Deep Q-Learning这一篇对…
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连续的, 比如足球场上足球的位置,此时,内存将无力承受这张Q表. 价值函数近似 既然Q表太大,那么怎么办呢? 假设我们可以找到一种方法来预测q值,那么在某个状态下,就可以估计其每个动作的q值,这样就不需要Q表了,这就是价值函数近似. 假设这个函数由参数w描述,那么 状态价值函数就表示为 v(s)≍f(…
https://blog.csdn.net/Young_Gy/article/details/73485518 强化学习在alphago中大放异彩,本文将简要介绍强化学习的一种q-learning.先从最简单的q-table下手,然后针对state过多的问题引入q-network,最后通过两个例子加深对q-learning的理解. 强化学习 Q-learning Q-Table Bellman Equation 算法 实例 Deep-Q-learning Experience replay Ex…
今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://github.com/google/dopamine 在过去几年里,强化学习研究取得了多方面的显著进展.这些进展使得智能体能够以超越人类的水平玩游戏,其中比较可圈可点的例子包括:DeepMind 的 DQN 在 Atari 游戏上的表现.AlphaGo.AlphaGo Zero 以及 Open AI Fi…
http://lib.csdn.net/article/aimachinelearning/68113 原文地址:http://blog.csdn.net/jinzhuojun/article/details/77144590 和其它的机器学习方向一样,强化学习(Reinforcement Learning)也有一些经典的实验场景,像Mountain-Car,Cart-Pole等.话说很久以前,因为没有统一的开发测试平台,大家都会自己实现,有用C/C++的,有用Python,还有用Matlab的…
目录 问题 解决方法 模型选择 框架构建 Sigcomm'18 AuTO: Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization 问题 主要问题:流量算法的配置周期长,人工配置难且繁复.人工配置的时间成本大,人为错误导致的性能降低. 要计算MLFQ的阈值参数是很麻烦的事情,先前有人构建了一个数学模型来优化这个阈值,在几个星期或者几个月更新一次阈值,更新周期过长. 可以使用DR…
当你正想运行强化学习的游戏时,突然提示没有安装pygame模块怎么办呢? 其实很简单,通过下面的命令,就可以安装: D:\AI\sample\tensorforce>pip install pygameCollecting pygame  Downloading pygame-1.9.3-cp36-cp36m-win_amd64.whl (4.2MB)    100% |████████████████████████████████| 4.2MB 120kB/sInstalling colle…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…
前言 谷歌推出的NASNet架构,用于大规模图像分类和识别.NASNet架构特点是由两个AutoML设计的Layer组成--Normal Layer and Reduction Layer,这样的效果是不再需要相关专家用human knowledge来搭建卷积网络架构,直接用RNN把Hyperparameter计算出来,这样就实现了网络结构自动学习. 论文:Learning Transferable Architectures for Scalable Image Recognition 强化学…
DQN 算法改进 (一)Dueling DQN Dueling DQN 是一种基于 DQN 的改进算法.主要突破点:利用模型结构将值函数表示成更加细致的形式,这使得模型能够拥有更好的表现.下面给出公式,并定义一个新的变量: \[ q(s_t, a_t)=v(s_t)+A(s_t, a_t) \] 也就是说,基于状态和行动的值函数 \(q\) 可以分解成基于状态的值函数 \(v\) 和优势函数(Advantage Function)\(A\) .由于存在: \[ E_{a_{t}}[q(s_t,…
深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10811587.html 目录 1.达到的目的 2.思路 2.1.强化学习(RL Reinforcement Learing) 2.2.深度学习(卷积神经网络CNN) 3.踩过的坑 4.代码实现(python3.5) 5.运行结果与分析 1.达到的目的 游戏场景:障碍物以一定速度往…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
原文地址: http://www.dataguru.cn/article-13548-1.html ------------------------------------------------------------------------------- https://baijiahao.baidu.com/s?id=1625146459890383305&wfr=spider&for=pc https://link.springer.com/content/pdf/10.1023%…
pytorch比tenserflow简单. 所以我们模仿用tensorflow写的强化学习. 学习资料: 本节的全部代码 Tensorflow 的 100行 DQN 代码 我制作的 DQN 动画简介 我的 DQN Tensorflow 教程 我的 强化学习 教程 PyTorch 官网 论文 Playing Atari with Deep Reinforcement Learning 要点 Torch 是神经网络库, 那么也可以拿来做强化学习, 之前我用另一个强大神经网络库 Tensorflow …
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…