一.集群规划 这里搭建一个 3 节点的 Spark 集群,其中三台主机上均部署 Worker 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop002 和 hadoop003 上分别部署备用的 Master 服务,Master 服务由 Zookeeper 集群进行协调管理,如果主 Master 不可用,则备用 Master 会成为新的主 Master. 二.前置条件 搭建 Spark 集群前,需要保证 JDK 环境.Zookeeper 集群和…
原文链接:在Spark中自定义Kryo序列化输入输出API 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo serialization.在默认情况下,Spark使用的是Java的ObjectOutputStream系列化框架,它支持所有继承java.io.Serializable的类系列化,虽然Java系列化非常灵活,但是它的性能不佳.然而我们可以使用Kryo 库来系列化,它相比Java serialization系列化高效,速度很快(通常比…
一.引言 数据的序列化在Android开发中占据着重要的地位,无论是在进程间通信.本地数据存储又或者是网络数据传输都离不开序列化的支持.而针对不同场景选择合适的序列化方案对于应用的性能有着极大的影响. 从广义上讲,数据序列化就是将数据结构或者是对象转换成我们可以存储或者传输的数据格式的一个过程,在序列化的过程中,数据结构或者对象将其状态信息写入到临时或者持久性的存储区中,而在对应的反序列化过程中,则可以说是生成的数据被还原成数据结构或对象的过程. 这样来说,数据序列化相当于是将我们原先的对象序列…
一.spark的序列化 1.1.官网解释 http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 序列化在任何分布式应用程序的性能中起着重要作用.将对象序列化或消耗大量字节的速度慢的格式将大大减慢计算速度.通常,这将是您应该优化Spark应用程序的第一件事.Spark旨在在便利性(允许您使用操作中的任何Java类型)和性能之间取得平衡.它提供了两个序列化库: Java序列化:默认情况下,Spark使用Java Objec…
官网说明:http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 一.JVM调优 1.1.Java虚拟机垃圾回收调优的背景 如果在持久化RDD的时候,持久化了大量的数据,那么Java虚拟机的垃圾回收就可能成为一个性能瓶颈.因为Java虚拟机会定期进行垃圾回收,此时就会追踪所有的java对象,并且在垃圾回收时,找到那些已经不在使用的对象,然后清理旧的对象,来给新的对象腾出内存空间. 垃圾回收的性能开销,是跟内存中的对象的数…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
一.版本说明 Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下: spark-streaming-kafka-0-8 spark-streaming-kafka-0-10 Kafka 版本 0.8.2.1 or higher 0.10.0 or higher AP 状态 Deprecated从 Spark 2.3.0 版本开始,Kafka 0.8 支持已被弃用…
一.RDD简介 RDD 全称为 Resilient Distributed Datasets,是 Spark 最基本的数据抽象,它是只读的.分区记录的集合,支持并行操作,可以由外部数据集或其他 RDD 转换而来,它具有以下特性: 一个 RDD 由一个或者多个分区(Partitions)组成.对于 RDD 来说,每个分区会被一个计算任务所处理,用户可以在创建 RDD 时指定其分区个数,如果没有指定,则默认采用程序所分配到的 CPU 的核心数: RDD 拥有一个用于计算分区的函数 compute:…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源不断地接入流数据,为了在演示过程中更接近真实环境将定义流数据模拟器.该模拟器主要功能:通过Socket方式监听指定的端口号,当外部程序通过该端口连接并请求数据时,模拟器将定时将指定的文件数据随机获取发送给外部程序. 1.1.2 模拟器代码 import java.io.{PrintWriter} import…
1.什么是Spark? Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MadReduce所具有的优点:但不同于MapReduce的是Job中间输出的结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法. 2.Spark的架构? Bagel(Pregel on Spark)    …