tf.summary.merge_all()】的更多相关文章

1. tf.reuse_default_graph() # 对graph结构图进行清除和重置操作 2.tf.summary.FileWriter(path)构造writer实例化,以便进行后续的graph写入 参数说明:path表示路径 3.writer.add_graph(sess.graph) 将当前参数的graph写入到tensorboard中 参数说明:sess.graph当前的网络结构图 4. summ = tf.summary.merge_all() # 将所有的summary都添加…
1.自动管理模式 summary_writer = tf.summary.FileWriter('E:/data/tensorflow-master/1.Cnn_Captcha/result/', flush_secs=60) summary_writer.add_graph(sess.graph)#添加graph图 tf.summary.scalar('loss', loss) tf.summary.scalar('accuracy', accuracy) sum_ops = tf.summa…
模块内的函数: tf.summary.audio(name, tensor, sample_rate, max_outputs=3, collections=None, family=None) 输出带有音频的summary协议缓冲区. tf.summary.get_summary_description(node_def) 根据给定的TensorSummary node_def检索对应的SummaryDescription.当summary op被实例化时,相关元数据的 SummaryDesc…
用法: 1.tf.summary.scalar 用来显示标量信息,其格式为: tf.summary.scalar(tags, values, collections=None, name=None) 例如:tf.summary.scalar('mean', mean) 一般在画loss,accuary时会用到这个函数. 2.tf.summary.histogram 用来显示直方图信息,其格式为: tf.summary.histogram(tags, values, collections=Non…
1.tf.summary.scalar('accuracy', accuracy) 损失值.准确率随着迭代次数的进行,其指标变化情况:一般在画loss,accuary时会用到这个函数. 2.tensorboard左侧的工具栏上的smoothing,表示在做图的时候对图像进行平滑处理,这样做是为了更好的展示参数的整体变化趋势.如果不平滑处理的话,有些曲线波动很大,难以看出趋势.0 就是不平滑处理,1 就是最平滑,默认是 0.6. 值为0时: 值为0.8时: 平滑处理后更能看出变化趋势. 3.工具栏…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS #…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS x…
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer # load data digits = load_di…
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope(layer_name): with tf.…
前面学习的cifar10项目虽小,但却五脏俱全.全面理解该项目非常有利于进一步的学习和提高,也是走向更大型项目的必由之路.因此,summary依然要从cifar10项目说起,通俗易懂的理解并运用summary是本篇博客的关键. 先不管三七二十一,列出cifar10中定义模型和训练模型中的summary的代码: # Display the training images in the visualizer. tf.summary.image('images', images) def _activ…