在开始学习之前,我们需要安装pandas模块.由于我安装的python的版本是2.7,故我们在https://pypi.python.org/pypi/pandas/0.16.2/#downloads 此网站上下载的0.16.2版本,下载后解压缩利用dos命令打开对应的文件下,并运行 python setup.py install安装,可能会出现报错:error: Microsoft Visual C++ 9.0 is required (Unable to find vcvarsall.bat…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
[ python数据分析笔记——数据加载与整理] https://mp.weixin.qq.com/s?__biz=MjM5MDM3Nzg0NA==&mid=2651588899&idx=4&sn=bf74cbf3cd26f434b73a581b6b96d9ac&chksm=bdbd1b388aca922ee87842d4444e8b6364de4f5e173cb805195a54f9ee073c6f5cb17724c363&mpshare=1&scene=…
数据分析和建模大部分时间都用在数据准备上,数据的准备过程包括:加载,清理,转换与重塑. 合并数据集 pandas对象中的数据可以通过一些内置方法来进行合并: pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来,实现类似于数据库中的连接操作. pandas.cancat表示沿着一条轴将多个对象堆叠到一起. 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象的缺失值. 下面将进行分别讲解: 1.数据库风格的DateFrame合并…
对数据集进行分组并对各分组应用函数是数据分析中的重要环节. group by技术 pandas对象中的数据会根据你所提供的一个或多个键被拆分为多组,拆分操作是在对象的特定轴上执行的,然后将一个函数应用到各个分组并产生一个新值,最后所有这些函数的执行结果会被合并到最终的结果对象中. >>> from pandas import * >>> df=DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one…
1 合并数据集 pandas.merge pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None) import pandas as pd from pandas impor…
一.丛mysql数据库中读取数据 import pandas as pdimport pymysqlconn = pymysql.connect( host = '***', user = '***', password = '***', db = '***', port =3306, charset = 'utf8' ) table = "select * from pl_risk_credit_rule_result limit 10" data = pd.read_sql(tab…
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名空间 %run命令 %run 执行所有文件 %run -i 访问变量 Ctrl-C中断执行 %paste可以粘贴剪切板的一切文本 一般使用%cpaste因为可以改 键盘快捷键 魔术命令 %timeit 检测任意语句的执行时间 %magic显示魔术命令的详细文档 %xdel v 删除变量,并清除其一切引用 注册…
1.文本文件 (1)pd.read_csv加载分隔符为逗号的数据:pd.read_table从文件.URL.文件型对象中加载带分隔符的数据.默认为制表符.(加载为DataFrame结构) 参数names指定列名,index_col用作行索引的列名或列编号,header用作列名的行号. (2)利用DataFrame的to_csv方法,将数据写入到文件. (3)import csv利用csv.reader读取已打开的文件对象:csv.writer方法写入数据. 2.json数据 import jso…
多种格式数据加载.处理与存储 实际的场景中,我们会在不同的地方遇到各种不同的数据格式(比如大家熟悉的csv与txt,比如网页HTML格式,比如XML格式),我们来一起看看python如何和这些格式的数据打交道. 2016-08 from __future__ import division from numpy.random import randn import numpy as np import os import sys import matplotlib.pyplot as plt n…
Python之pandas数据加载.存储 0. 输入与输出大致可分为三类: 0.1 读取文本文件和其他更好效的磁盘存储格式 2.2 使用数据库中的数据 0.3 利用Web API操作网络资源 1. 读取文本文件和其他更好效的磁盘存储格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数. 1.1 pandas中的解析函数: read_csv 从文件.URL.文件型对象中加载带分隔符的数据.默认分隔符为逗号 read_table 从文件.URL.文件型对象中加载带分隔符的数…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
利用Crowbar抓取网页异步加载的内容 [Python俱乐部] 利用Crowbar抓取网页异步加载的内容 在做 Web 信息提取.数据挖掘的过程中,一个关键步骤就是网页源代码的获取.但是出于各种原因,很有可能网页上我们感兴趣的内容是在 HTML 文档加载完毕后用客户端 JavaScript 输出或是利用 AJAX 异步读取的,这样一来直接使用 POCO 或者 HttpClient 这样的库来下载文档是得不到这些内容的.当然可以选择自己实现 JS 代码的解析执行,不过借助浏览器的功能来完成这些脚…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 读取excel数据 import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df 2 检测缺失值 2.1 isnull返回一个含有布尔值的对象 import pandas as pd import numpy as np file =…
学习:http://zhihu.esrichina.com.cn/article/634使用光标和内存中的要素类将数据加载到要素集 import arcpy arcpy.env.overwriteOutput = True arcpy.ImportToolbox("http://flame7/arcgis/services;BufferByVal", "servertools") # List of coordinates coordinates = [[-117.…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片.…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章节知识图谱<利用Python进行数据分析>自学知识图谱-导航…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章节知识图谱<利用Python进行数据分析>自学知识图谱-导航…
Pandas数据加载 关注公众号"轻松学编程"了解更多. pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,其中read_csv和read_table这两个使用最多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 后打开浏览器输入网址http://localhost:8888/ 导入包 import pandas as pd from pandas import DataFrame,Series read_xxx()参数:…
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
<利用Python进行数据分析·第2版> 第 1 章 准备工作第 2 章 Python 语法基础,IPython 和 Jupyter第 3 章 Python 的数据结构.函数和文件第 4 章 NumPy 基础:数组和矢量计算第 5 章 pandas 入门第 6 章 数据加载.存储与文件格式第 7 章 数据清洗和准备第 8 章 数据规整:聚合.合并和重塑第 9 章 绘图和可视化第 10 章 数据聚合与分组运算第 11 章 时间序列第 12 章 pandas 高级应用第 13 章 Python 建…
注: 最近有一小任务,需要收集水质和水雨信息,找了两个网站:国家地表水水质自动监测实时数据发布系统和全国水雨情网.由于这两个网站的数据都是动态加载出来的,所以我用了Selenium来完成我的数据获取.数据的获取过程跟人手动获取过程类似,所以也不会对服务器造成更大负荷.这是我写的第1个爬虫,初次接触,还请各位多多指教.本文的代码见Selenium获取动态页面数据1.ipynb或Selenium获取动态页面数据1.py. 1.准备环境 工欲善其事,必先装好环境,耐心地把下面的环境装好. 建议安装Py…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
点击获取提取码:hi2j 内容简介 [名人推荐] "科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法.本书在未来几年里肯定会成为Python领域中技术计算的权威指南." --Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一 [内容简介] 还在苦苦寻觅用Python控制.处理.整理.分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy.pandas.matplo…
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得会用才行,这是码这本书的原因.首先按照书上说的进行安装,google下载了epd_free-7.3-1-win-x86.msi,译者建议按照作者的版本安装,EPDFree包括了Numpy,Scipy,matplotlib,Chaco,IPython.这里的pandas需要自己安装,对应版本为pandas-0.…
数据加载.存储与文件格式 读写文本格式的数据 逐块读取文本文件 read_xsv参数nrows=x 要逐块读取文件,需要设置chunksize(行数),返回一个TextParser对象. 还有一个get_chunk方法,它使你可以读取任意大小的块. 将数据写出到文本格式 DataFrame的to_csv() Series的to_csv()和from_csv()和read_csv() 手工处理分隔符格式 JSON数据 python标准库中有专门操作模块 json.loads() json.dump…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
注: 上一篇<Python+Selenium爬取动态加载页面(1)>讲了基本地如何获取动态页面的数据,这里再讲一个稍微复杂一点的数据获取全国水雨情网.数据的获取过程跟人手动获取过程类似,所以也不会对服务器造成更大负荷.本文的代码见Selenium获取动态页面数据2.ipynb或Selenium获取动态页面数据2.py.同样在开始前需要准备环境,具体环境准备参考上一篇. 1.数据获取目标 全国水雨情网的数据同样是动态加载出来的,在浏览中打开网页后http://xxfb.hydroinfo.gov…
访问数据是使用本书所介绍的这些工具的第一步.这里会着重介绍pandas的数据输入与输出,虽然别的库中也有不少以此为目的的工具. 输入输出通常可以划分为几个大类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据,利用WEB API操作网络资源. 1.读写文本格式的数据 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数.如下表对它们进行了总结,其中read_csv和read_table可能会是今后用的最多的: 函数 说明 read_csv   从文件.URL.文件型…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21]: from pandas import Series,DataFrame In [22]: import pandas as pd Series 是一种类似一维数组的对象,是一组数据与索引的组合.如果没设置索引,默认会加上. In [23]: obj = Series([4,3,5,7,8,1,2]) In…