[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer Society) [论文作者]Yehuda Koren(Yahoo Research) , Robert Bell and Chris Volinsky( AT&T Labs—Research) [论文链接]Paper(8-pages // Double column) [Info] 此篇论文的作者是n…
Recommender system strategies 通过例子简单介绍了一下 collaborative filtering 以及latent model,这两个方法在之前的博客里面介绍过,不累述. Matrix factorization methods  许多成功的LFM都是基于MF的.推荐系统的输入数据需要一定显示反馈信息,例如一个用户给电影的评论.通常包含反馈信息的矩阵都是稀疏的,因为用户不会对所有的电影都作出点评.显示反馈信息并不是一直有效的,推荐系统往往需要使用一些隐式的反馈(…
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到一组优良的特征.通过推荐系统(recommender systems),将领略一小部分特征学习的思想. 假使有 5 部电影,3部爱情片.2部动作片.  4 个用户为其中的部分电影打了分.现在希望构建一个算法,预测每个人可能给没看过的电影打多少分,以此作为推荐的依据. 下面引入一些标记:nu     …
1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的评分矩阵分解为3个矩阵,而推荐本文要介绍的MF是直接将一个矩阵分解为两个矩阵,一个包含Users 的因子向量,另一个包含着Items 的因子向量. 2.原理简介 假如电影分为三类:动画片,武打片,纪录片,而某一部电影对应这三类的隶属度分别为 0, 0.2, 0.7,可以看出这是一部纪录片里面有些武打成…
有如下R(5,4)的打分矩阵:(“-”表示用户没有打分) 其中打分矩阵R(n,m)是n行和m列,n表示user个数,m行表示item个数 那么,如何根据目前的矩阵R(5,4)如何对未打分的商品进行评分的预测(如何得到分值为0的用户的打分值)? ——矩阵分解的思想可以解决这个问题,其实这种思想可以看作是有监督的机器学习问题(回归问题). 矩阵R可以近似表示为P与Q的乘积:R(n,m)≍ P(n,K)*Q(K,m) 矩阵分解的过程中,将原始的评分矩阵分解成两个矩阵和的乘积:  矩阵P(n,K)表示n…
一.矩阵分解 1.案例 我们都熟知在一些软件中常常有评分系统,但并不是所有的用户user人都会对项目item进行评分,因此评分系统所收集到的用户评分信息必然是不完整的矩阵.那如何跟据这个不完整矩阵中已有的评分来预测未知评分呢.使用矩阵分解的思想很好地解决了这一问题. 假如我们现在有一个用户-项目的评分矩阵R(n,m)是n行m列的矩阵,n表示user个数,m行表示item的个数 那么,如何根据目前的矩阵R(5,4)如何对未打分的商品进行评分的预测(如何得到分值为0的用户的打分值)? --矩阵分解的…
以前读了Yehuda Koren和Ma Hao的论文,感觉非常不错,这里分享一下.如果想着具体了解他们近期发的论文,可以去DBLP去看看. Yehuda Koren也是Netflix Prize的冠军队成员,是推荐系统领域的大神级人物. 1.<Matrix Factorization Techniques For Recommender Systems> 2.<Factorization Meets the Neighborhood:a Multifaceted Collaborativ…
http://ling0322.info/2013/05/07/recommander-system.html 这个学期Web智能与社会计算的大作业就是完成一个推荐系统参加百度电影推荐算法大赛,成绩按照评测数据给分.老师介绍了N种方法包括基于内容的.以及协同过滤等等,不过他强烈建议使用矩阵奇异值分解的办法来做.也正因为是这个原因,我们一共8组其中6组的模型都是SVD. 这个比赛就是提供给你用户对电影的评分.电影的TAG.用户的社会关系(好友).用户的观看纪录信息.其中用户对电影的评分满分是5分,…
[论文标题]Improving Implicit Recommender Systems with View Data(IJCAI 18) [论文作者]Jingtao Ding  , Guanghui Yu  , Xiangnan He  , Yuhan Quan ,Yong Li , Tat-Seng Chua , Depeng Jin  , Jiajie Yu  [论文链接]Paper(7-pages // Double column) [摘要] 大多数现有的推荐系统只利用主反馈数据,比如电…
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…