首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
机器学习:决策树(CART 、决策树中的超参数)
】的更多相关文章
【笔记】CART与决策树中的超参数
CART与决策树中的超参数 先前的决策树其实应该称为CART CART的英文是Classification and regression tree,全称为分类与回归树,其是在给定输入随机变量X条件下输出随机变量Y的条件概率分布的学习方法,就是假设决策树是二叉树,内部结点特征的取值为"是"和"否",左分支是取值为"是"的分支,右分支是取值为"否"的分支,其可以解决分类问题,又可以解决回归问题,特点就是根据某一个维度d和某一个阈值…
机器学习:决策树(CART 、决策树中的超参数)
老师:非参数学习的算法都容易产生过拟合: 一.决策树模型的创建方式.时间复杂度 1)创建方式 决策树算法 既可以解决分类问题,又可以解决回归问题: CART 创建决策树的方式:根据某一维度 d 和某一个 阈值 v 进行二分:(得到的是一个二叉树) scikit-learn 中的创建决策树的方式:CART(Classification And Regression Tree),也就是二叉树的方式: 创建决策树的方式有多种:ID3.C4.5.C5.0.CART: 2)二叉树的实际复杂度 预测样本时的…
lecture16-联合模型、分层坐标系、超参数优化及本课未来的探讨
这是HInton的第16课,也是最后一课. 一.学习一个图像和标题的联合模型 在这部分,会介绍一些最近的在学习标题和描述图片的特征向量的联合模型上面的工作.在之前的lecture中,介绍了如何从图像中提取语义有意义的特征.不过那是在没有从标题中得到帮助的情况下做的.显然在标题中的单词应该有助于从图片中提取合适的语义类型.类似的,图片也应该有助于在区分标题中的单词的意思是什么.所以idea就是我们要在一个很大的网络上,给他输入然后计算图像上提取的视觉特征向量,然后学习标题的单词表征,然后学着将这两…
机器学习——决策树,DecisionTreeClassifier参数详解,决策树可视化查看树结构
0.决策树 决策树是一种树型结构,其中每个内部节结点表示在一个属性上的测试,每一个分支代表一个测试输出,每个叶结点代表一种类别. 决策树学习是以实例为基础的归纳学习 决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一棵熵值下降最快的树.到叶子节点的处的熵值为零,此时每个叶结点中的实例都属于同一类. 1.决策树学习算法的特点 决策树算法的最大优点是可以自学习.在学习的过程中,不需要使用者了解过多知识背景,只需要对训练实例进行较好的标注,就能够进行学习了. 在决策树的算法中,建立…
机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size
机器学习算法中如何选取超参数:学习速率.正则项系数.minibatch size 本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值.(本文会不断补充) 学习速率(learning rate,η) 运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η.下面讨论在训练时选取η的策略. 固定的学习速率.如果学习速率太小,则会使收敛过慢,如果学习速率太大,则会导致代价…
机器学习实战---决策树CART回归树实现
机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我们要明白,什么是回归树,什么是分类树. 两者的区别在于样本输出: 如果样本输出是离散值,那么这是一颗分类树. 如果果样本输出是连续值,那么那么这是一颗回归树. 除了概念的不同,CART回归树和CART分类树的建立和预测的区别主要有下面两点: 1)连续值的处理方法不同 2)决策树建立后做预测的方式不同…
机器学习超参数优化算法-Hyperband
参考文献:Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization I. 传统优化算法 机器学习中模型性能的好坏往往与超参数(如batch size,filter size等)有密切的关系.最开始为了找到一个好的超参数,通常都是靠人工试错的方式找到"最优"超参数.但是这种方式效率太慢,所以相继提出了网格搜索(Grid Search, GS) 和 随机搜索(Random Search,…
Spark2.0机器学习系列之2:基于Pipeline、交叉验证、ParamMap的模型选择和超参数调优
Spark中的CrossValidation Spark中采用是k折交叉验证 (k-fold cross validation).举个例子,例如10折交叉验证(10-fold cross validation),将数据集分成10份,轮流将其中9份做训练1份做验证,10次的结果的均值作为对算法精度的估计. 10折交叉检验最常见,是因为通过利用大量数据集.使用不同学习技术进行的大量试验,表明10折是获得最好误差估计的恰当选择,而且也有一些理论根据可以证明这一点.但这并非最终结论,争议仍然存在.而且似…
机器学习:SVM(scikit-learn 中的 RBF、RBF 中的超参数 γ)
一.高斯核函数.高斯函数 μ:期望值,均值,样本平均数:(决定告诉函数中心轴的位置:x = μ) σ2:方差:(度量随机样本和平均值之间的偏离程度:, 为总体方差, 为变量, 为总体均值, 为总体例数) 实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:S^2= ∑(X- ) ^2 / (n-1),S^2为样本方差,X为变量, 为样本均值,n为样本例数. σ:标准差:(反应样本数据分布的情况:σ 越小高斯分布越窄,样本分布越集中:σ 越大高斯分布越…
机器学习:调整kNN的超参数
一.评测标准 模型的测评标准:分类的准确度(accuracy): 预测准确度 = 预测成功的样本个数/预测数据集样本总数: 二.超参数 超参数:运行机器学习算法前需要指定的参数: kNN算法中的超参数:k.weights.P: 一般超参数之间也相互影响: 调参,就是调超参数: 1)问题 # 以kNN算法为例 平票:如果k个点中,不同类型的样本数相等,怎么选取? 如果选取的k个点中,数量多的一类样本点距离测试样本较远,数量少的一类样本点距离测试样本较近,此时选取数量较多的类型作为输出结果,不具说服…